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Introduction



Automatic visual inspection for infrastructure condition monitoring

Problem statement
Detection and monitoring of surface
cracks in infrastructure elements.

Manual visual inspection:

▶ Limited availability

▶ Inspector subjectivity

▶ Service interruptions

▶ Hard-to-access or hazardous
locations

→ Automatic visual inspection
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Machine learning for image-based crack detection

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 1
0

damage-free

crack
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Machine learning for image-based crack detection

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in
detection of cracks in images, but they require large annotated datasets for training.

Classification task:

Neural Network 0
1

damage-free

crack

▶ Does not allow severity quantification

▶ Fast and easy image-level annotation (1 bit)

Semantic segmentation task:

Neural Network

▶ Allows severity quantification and monitoring

▶ Tedious and costly pixel-level annotation
(256×256 → 216 = 64 Kb)
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Segmenting without annotating using
explainable AI



Segmenting without annotating using explainable AI

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.
→ Barrier to the deployment of automated crack segmentation systems.

Research question
Can we obtain image segmentations while avoiding pixel-level annotation?

Weakly-supervised segmentation with explainable AI (XAI)

1. Train a classifier to discriminate between
damage-free and cracked samples

2. Find which pixels are contributing to the crack
class (attribution maps)

3. Extract approximate segmentation masks

▶ weakly-supervised (image-level labels)

▶ post-hoc XAI techniques [1]

▶ expected match between attributions and
segmentation
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[1] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI” in Information fusion, 2019.
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2. Find which pixels are contributing to the crack
class (attribution maps)

3. Extract approximate segmentation masks

▶ weakly-supervised (image-level labels)

▶ post-hoc XAI techniques [1]

▶ expected match between attributions and
segmentation

Previous work applied Layer-wise Relevance Propagation (LRP) for damage segmentation [2], but comparison
between ̸= XAI methods and severity quantification is lacking.

[1] A. B. Arrieta et al., “Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI” in Information fusion, 2019.
[2] C. Seibold et al., “From Explanations to Segmentation: Using Explainable AI for Image Segmentation” in 17th International
Conference on Computer Vision Theory and Applications (VISAPP), 2022. 4/16



One example: Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) propagates relevance scores from layer l + 1 to l in a backward pass,
using messages R

(l,l+1)
i←j and propagation rules [3].

▶ Conservation property:
∑

i R
(l,l+1)
i←j = R

(l+1)
j

▶ Easy for linear networks xj =
∑

i xiwij : Ri←j = xiwij

▶ For non-linear networks xj = g(
∑

i xiwij + bj ), we only have rules with approximate conservation.

▶ LRP-ϵ: Ri =
∑

j
xiwij

ϵ+
∑

0,i xiwij
Rj

▶ LRP-γ: Ri =
∑

j

xi (wij+γw+
ij )∑

0,i xi (wij+γw+
ij )

Rj

▶ LRP-αβ: Ri =
∑

j

(
α

(xiwij )
+∑

0,i (xiwij )
+ + β

(xiwij )
−∑

0,i (xiwij )
−

)
Rj

▶ zB-rule: Ri =
∑

j

xiwij−liw
+
ij −hiw

−
ij )∑

i xiwij−liw
+
ij −hiw

−
ij )

Rj

[3] G. Montavon et al., “Layer-Wise Relevance Propagation: An Overview” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, 2019.
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Methodology

Main contributions

▶ We evaluate and compare several post-hoc XAI methods.

▶ We investigate damage severity quantification and growth monitoring.

Proposed methodology:

1. Data collection and labeling (image-level)

1 0
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Experimental settings



Compared methods

XAI methods (weakly-supervised)

▶ Input×Gradient [4]

▶ Integrated Gradients [5]

▶ DeepLift [6]

▶ DeepLiftShap, GradientShap [7]

▶ Layer-wise Relevance Propagation [8]

Unsupervised methods

▶ Raw image pixels

▶ Convolutional Autoencoder (CAE) residuals

Supervised method

▶ U-Net (oracle trained on pixel-level labels)

[4] D. Baehrens et al., “How to Explain Individual Classification Decisions” in Journal of Machine Learning Research, 2010.
[5] M. Sundararajan et al., Axiomatic Attribution for Deep Networks in, 2017.
[6] A. Shrikumar et al., Learning Important Features Through Propagating Activation Differences in, 2019.
[7] S. M. Lundberg et al., “A Unified Approach to Interpreting Model Predictions” in Advances in Neural Information
Processing Systems, 2017.
[8] S. Bach et al., “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation” in
PloS One, 2015.
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Model architectures

▶ Classifier: VGG11-128 (VGG11 with 128 neurons in FC layers)

▶ CAE: VGG11 encoder and symmetrical decoder

▶ U-Net: U-Net11 (VGG11 encoder)
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Dataset

▶ Experimental DIC cracks dataset [9], 256×256 image patches from stone masonry walls damaged
in a shear-compression experiment conducted at the EESD EPFL laboratory.

▶ Annotated segmentation masks for the cracked image patches (used for evaluation only). To
perform binary classification, we added 874 negative patches coming from the same walls.

[9] A. Rezaie et al., “Comparison of crack segmentation using digital image correlation measurements and deep learning” in
Construction and Building Materials, 2020.
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Experimental results

Segmentation



Qualitative results | Visualization after binarization

XAI-based (weakly-supervised) Unsupervised Supervised
Image True Input×Grad IntGrad DeepLift DeepLiftShap GradientShap LRP Raw CAE U-Net
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Qualitative results | Visualization after binarization + morph. operations

XAI-based (weakly-supervised) Unsupervised Supervised
Image True Input×Grad IntGrad DeepLift DeepLiftShap GradientShap LRP Raw CAE U-Net
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Quantitative results | Segmentation quality

Table 1: Crack segmentation quality evaluation (values in %).

Method F1 Precision Recall IoU
Input×Gradient 23.30 14.37 61.55 13.19
IntGrad 27.74 20.81 41.56 16.10
DeepLift 34.44 28.75 42.96 20.81
DeepLiftShap 38.19 36.37 40.21 23.60
GradientShap 20.61 14.09 38.38 11.49
LRP 37.43 35.06 40.16 23.03
Raw pixels 4.73 2.42 100.0 2.42
CAE 5.93 3.07 90.09 3.06
U-Net 83.67 82.22 85.17 71.93

XAI-based (weakly-supervised) Unsupervised Fully supervised
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Experimental results

Severity quantification



Quantitative results | Severity quantification

Severity metrics: number of cracks per patch (CPP) [10], total crack area, maximum crack width [11].

Table 2: Crack severity quantification evaluation.

Method
CPP Area Width
MAE MAPE MAPE

Input×Gradient 1.13 448.1 358.8
IntGad 0.94 271.3 268.9
DeepLift 0.81 146.0 264.6
DeepliftShap 0.78 103.6 189.2
GradientShap 1.76 338.8 295.5
LRP 0.90 91.0 163.1
U-Net 0.74 20.1 20.8

XAI-based (weakly-supervised) Fully supervised

[10] B. G. Pantoja-Rosero et al., “TOPO-Loss for continuity-preserving crack detection using deep learning” in Construction
and Building Materials, 2022.
[11] M. Carrasco et al., “Image-Based Automated Width Measurement of Surface Cracking” in Sensors, 2021.
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Experimental results

Growth monitoring



Growth monitoring experiment

Simulation of 100 artificial linear growth trajectories of cracks.

LRP explanations
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Growth monitoring experiment

Method
Area growth

Average r Slope MAPE
Input×Gradient -0.32 235.9
IntGrad 0.77 151.3
DeepLift 0.44 84.7
DeepLiftShap 0.90 88.0
GradientShap 0.33 367.7
LRP 0.84 35.6

Method
Width growth

Average r Slope MAPE
Input×Gradient -0.03 110.1
IntGrad 0.22 77.7
DeepLift 0.18 88.4
DeepLiftShap 0.71 73.8
GradientShap 0.07 109.1
LRP 0.80 37.8
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Conclusions and Future work

▶ Approximate segmentation masks can be obtained from the post-hoc explanations of a classifier
using XAI methods.

▶ We evaluated the performance of 6 XAI methods in terms of segmentation quality, severity
quantification and growth monitoring abilities.

▶ While quality is lower than supervised segmentation approaches, the labeling cost is significantly
lower.

▶ The best-performing methods are LRP and DeepLift(Shap). By taking into account
computational runtime, LRP offers the best solution.

Future work:

▶ Apply the methodology to different types of defects and infrastructures.

▶ Evaluate the approach using real crack growth data.

▶ Use approximate segmentations as coarse labels for supervised or semi-supervised segmentation.

▶ Investigate other families of explainable AI methods
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Thanks for listening! Questions?
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