Segmenting without Annotating: Crack Segmentation and Monitoring via Post-hoc Classifier Explanations

IMC 2023

Florent Forest¹, Hugo Porta², Devis Tuia², Olga Fink¹

¹ Intelligent Maintenance and Operations Systems (IMOS), EPFL, Switzerland

² Environmental Computational Science and Earth Observation (ECEO), EPFL, Switzerland first.last@epfl.ch

Overview

Introduction

Segmenting without annotating using explainable AI

Experimental settings

Experimental results

Segmentation

Severity quantification

Growth monitoring

Introduction

Automatic visual inspection for infrastructure condition monitoring

Problem statement

Detection and monitoring of **surface cracks** in infrastructure elements.

Automatic visual inspection for infrastructure condition monitoring

Problem statement

Detection and monitoring of **surface cracks** in infrastructure elements.

Manual visual inspection:

- ► Limited availability
- Inspector subjectivity
- Service interruptions
- Hard-to-access or hazardous locations

Automatic visual inspection for infrastructure condition monitoring

Problem statement

Detection and monitoring of **surface cracks** in infrastructure elements.

Manual visual inspection:

- Limited availability
- ► Inspector subjectivity
- ► Service interruptions
- ► Hard-to-access or hazardous locations
- $\rightarrow \text{Automatic visual inspection}$

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

- ► Does not allow severity quantification
- ► Fast and easy image-level annotation (1 bit)

Data-driven approaches based on supervised deep learning have demonstrated excellent performance in detection of cracks in images, but they require **large annotated datasets** for training.

Classification task:

- ► Does not allow severity quantification
- ► Fast and easy image-level annotation (1 bit)

Semantic segmentation task:

- ► Allows severity quantification and monitoring
- ► Tedious and costly pixel-level annotation $(256 \times 256 \rightarrow 2^{16} = 64 \text{ Kb})$

Segmenting without annotating using

explainable AI

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.

 \rightarrow Barrier to the deployment of automated crack segmentation systems.

Research question

Can we obtain image segmentations while avoiding pixel-level annotation?

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.

 \rightarrow Barrier to the deployment of automated crack segmentation systems.

Research question

Can we obtain image segmentations while avoiding pixel-level annotation?

Weakly-supervised segmentation with explainable AI (XAI)

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.

ightarrow Barrier to the deployment of automated crack segmentation systems.

Research question

Can we obtain image segmentations while avoiding pixel-level annotation?

Weakly-supervised segmentation with explainable AI (XAI)

1. Train a classifier to discriminate between damage-free and cracked samples

weakly-supervised (image-level labels)

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.

ightarrow Barrier to the deployment of automated crack segmentation systems.

Research question

Can we obtain image segmentations while avoiding pixel-level annotation?

Weakly-supervised segmentation with explainable AI (XAI)

- 1. Train a classifier to discriminate between damage-free and cracked samples
- 2. Find which pixels are contributing to the crack class (attribution maps)

- weakly-supervised (image-level labels)
- ▶ post-hoc XAI techniques [1]

^[1] A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI" in *Information fusion*, 2019.

Segmentation algorithms are data-hungry, and pixel-level labeling is tedious and costly.

ightarrow Barrier to the deployment of automated crack segmentation systems.

Research question

Can we obtain image segmentations while avoiding pixel-level annotation?

Weakly-supervised segmentation with explainable AI (XAI)

- 1. Train a classifier to discriminate between damage-free and cracked samples
- Find which pixels are contributing to the crack class (attribution maps)
- 3. Extract approximate segmentation masks

- ► weakly-supervised (image-level labels)
- ▶ post-hoc XAI techniques [1]
- expected match between attributions and segmentation

Previous work applied Layer-wise Relevance Propagation (LRP) for damage segmentation [2], but comparison between \neq XAI methods and severity quantification is lacking.

- [1] A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI" in *Information fusion*, 2019.
- [2] C. Seibold et al., "From Explanations to Segmentation: Using Explainable AI for Image Segmentation" in 17th International Conference on Computer Vision Theory and Applications (VISAPP), 2022.

One example: Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) propagates **relevance scores** from layer l+1 to l in a backward pass, using messages $R_{i\leftarrow j}^{(l,l+1)}$ and propagation rules [3].

One example: Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) propagates **relevance scores** from layer l+1 to l in a backward pass, using messages $R_{i \leftarrow j}^{(l,l+1)}$ and propagation rules [3].

- ► Conservation property: $\sum_{i} R_{i = i}^{(l, l+1)} = R_{i}^{(l+1)}$
- ▶ Easy for linear networks $x_i = \sum_i x_i w_{ii}$: $R_{i \leftarrow i} = x_i w_{ii}$
- ▶ For non-linear networks $x_i = g(\sum_i x_i w_{ii} + b_i)$, we only have rules with approximate conservation.

► LRP-
$$\epsilon$$
: $R_i = \sum_j \frac{x_i w_{ij}}{\epsilon + \sum_{\mathbf{0},i} x_i w_{ij}} R_j$

► LRP-
$$\alpha\beta$$
: $R_i = \sum_j \left(\alpha \frac{(x_i w_{ij})^+}{\sum_{\mathbf{0},i} (x_i w_{ij})^+} + \beta \frac{(x_i w_{ij})^-}{\sum_{\mathbf{0},i} (x_i w_{ij})^-} \right) R_j$

5/16

► LRP-
$$\gamma$$
: $R_i = \sum_j \frac{x_i(w_{ij} + \gamma w_{ij}^+)}{\sum_{\mathbf{0},i} x_i(w_{ij} + \gamma w_{ii}^+)} R_j$

►
$$z^{\mathcal{B}}$$
-rule: $R_i = \sum_j \frac{x_i w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^-}{\sum_i x_i w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^-} R_j$

[3] G. Montavon et al., "Layer-Wise Relevance Propagation: An Overview" in Explainable Al: Interpreting, Explaining and

Main contributions

- ▶ We evaluate and compare several post-hoc XAI methods.
- ▶ We investigate damage severity quantification and growth monitoring.

Main contributions

- ▶ We evaluate and compare several post-hoc XAI methods.
- ▶ We investigate damage severity quantification and growth monitoring.

Main contributions

- ▶ We evaluate and compare several post-hoc XAI methods.
- ► We investigate damage severity quantification and growth monitoring.

Main contributions

- ▶ We evaluate and compare several post-hoc XAI methods.
- ▶ We investigate damage severity quantification and growth monitoring.

Main contributions

- ▶ We evaluate and compare several post-hoc XAI methods.
- ▶ We investigate damage severity quantification and growth monitoring.

Experimental settings

Compared methods

XAI methods (weakly-supervised)

- ► Input×Gradient [4]
- ► Integrated Gradients [5]
- ► DeepLift [6]
- ► DeepLiftShap, GradientShap [7]
- ► Layer-wise Relevance Propagation [8]

Unsupervised methods

- ► Raw image pixels
- Convolutional Autoencoder (CAE) residuals

Supervised method

► U-Net (oracle trained on pixel-level labels)

^[4] D. Baehrens et al., "How to Explain Individual Classification Decisions" in Journal of Machine Learning Research, 2010.

^[5] M. Sundararajan et al., Axiomatic Attribution for Deep Networks in, 2017.

^[6] A. Shrikumar et al., Learning Important Features Through Propagating Activation Differences in, 2019.

^[7] S. M. Lundberg et al., "A Unified Approach to Interpreting Model Predictions" in Advances in Neural Information Processing Systems, 2017.

^[8] S. Bach et al., "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation" in PloS One, 2015.

Model architectures

► Classifier: VGG11-128 (VGG11 with 128 neurons in FC layers)

► CAE: VGG11 encoder and symmetrical decoder

► U-Net: U-Net11 (VGG11 encoder)

Dataset

- ► Experimental DIC cracks dataset [9], 256×256 image patches from stone masonry walls damaged in a shear-compression experiment conducted at the EESD EPFL laboratory.
- ► Annotated segmentation masks for the cracked image patches (used for evaluation only). To perform binary classification, we added 874 negative patches coming from the same walls.

^[9] A. Rezaie et al., "Comparison of crack segmentation using digital image correlation measurements and deep learning" in Construction and Building Materials, 2020.

Experimental results

Experimental results

Segmentation

Qualitative results | Visualization after binarization

Qualitative results | Visualization after binarization + morph. operations

Quantitative results | Segmentation quality

Table 1: Crack segmentation quality evaluation (values in %).

Method	F1	Precision	Recall	loU
$Input { imes} Gradient$	23.30	14.37	61.55	13.19
IntGrad	27.74	20.81	41.56	16.10
DeepLift	34.44	28.75	42.96	20.81
DeepLiftShap	<u>38.19</u>	36.37	40.21	23.60
GradientShap	20.61	14.09	38.38	11.49
LRP	37.43	35.06	40.16	23.03
Raw pixels	4.73	2.42	100.0	2.42
CAE	5.93	3.07	90.09	3.06
U-Net	83.67	82.22	85.17	71.93

XAI-based (weakly-supervised) Unsupervised Fully supervised

Quantitative results | Severity quantification

Severity metrics: number of cracks per patch (CPP) [10], total crack area, maximum crack width [11].

Table 2: Crack severity quantification evaluation.

Method	CPP	Area	Width
Method	MAE	MAPE	MAPE
$Input { imes} Gradient$	1.13	448.1	358.8
IntGad	0.94	271.3	268.9
DeepLift	0.81	146.0	264.6
DeepliftShap	0.78	103.6	189.2
GradientShap	1.76	338.8	295.5
LRP	0.90	<u>91.0</u>	<u>163.1</u>
U-Net	0.74	20.1	20.8

XAI-based (weakly-supervised) Fully supervised

^[10] B. G. Pantoja-Rosero et al., "TOPO-Loss for continuity-preserving crack detection using deep learning" in Construction and Building Materials, 2022.

^[11] M. Carrasco et al., "Image-Based Automated Width Measurement of Surface Cracking" in Sensors, 2021.

Experimental results
Growth monitoring

Growth monitoring experiment

Simulation of 100 artificial linear growth trajectories of cracks.

Growth monitoring experiment

	Area growth		
Method	Average <i>r</i>	Slope MAPE	
Input×Gradient	-0.32	235.9	
IntGrad	0.77	151.3	
DeepLift	0.44	84.7	
DeepLiftShap	0.90	88.0	
GradientShap	0.33	367.7	
LRP	0.84	<u>35.6</u>	
Method	Width growth		
Ivietnod	Average <i>r</i>	Slope MAPE	
Input×Gradient	-0.03	110.1	
IntGrad	0.22	77.7	
DeepLift	0.18	88.4	
DeepLiftShap	0.71	73.8	
GradientShap	0.07	109.1	
LRP	<u>0.80</u>	<u>37.8</u>	

600 500 400 300 200 100 (Severity estimation (MAPE)

Conclusions and Future work

- Approximate segmentation masks can be obtained from the post-hoc explanations of a classifier using XAI methods.
- ► We evaluated the performance of 6 XAI methods in terms of segmentation quality, severity quantification and growth monitoring abilities.
- ▶ While quality is lower than supervised segmentation approaches, the labeling cost is significantly lower.
- ► The best-performing methods are LRP and DeepLift(Shap). By taking into account computational runtime, LRP offers the best solution.

Conclusions and Future work

- Approximate segmentation masks can be obtained from the post-hoc explanations of a classifier using XAI methods.
- ► We evaluated the performance of 6 XAI methods in terms of segmentation quality, severity quantification and growth monitoring abilities.
- ▶ While quality is lower than supervised segmentation approaches, the labeling cost is significantly lower.
- ► The best-performing methods are LRP and DeepLift(Shap). By taking into account computational runtime, LRP offers the best solution.

Future work:

- ► Apply the methodology to different types of defects and infrastructures.
- ► Evaluate the approach using real crack growth data.
- ▶ Use approximate segmentations as coarse labels for supervised or semi-supervised segmentation.
- ► Investigate other families of explainable AI methods

