

Real-time vibration and operational deflection shape analysis of machines and structures with the Motion Amplification® optical technology

IMC 2023 - EPFL Lausanne - 12th September, 2023

Dipl. Ing. Luca Del Nero DarkWave Thermo Schweiz KLG

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2016/0217587 A1

(43) **Pub. Date:** Jul. 28, 2016

(54) APPARATUS AND METHOD FOR ANALYZING PERIODIC MOTIONS IN MACHINERY

(71) Applicant: Jeffrey R. Hay, Louisville, KY (US)

(72) Inventor: Jeffrey R. Hay, Louisville, KY (US)

(21) Appl. No.: 14/757,245

(22) Filed: Dec. 9, 2015 **Publication Classification**

(51) Int. Cl. G06T 7/20

(57)

(57)

G01N 29/44 (2006.01) (52) U.S. Cl.

G06T 7/204 (2013.01); G01N 29/44 (2013.01); G06T 7/206 (2013.01); G01N 2291/028 (2013.01): G06T 2207/20216 (2013.01); G06T 2207/20056 (2013.01); G06T 2207/30164 (2013.01)

(2006.01)

ABSTRACT

(19) United States

Hay

(12) Patent Application Publication (10) Pub. No.: US 2016/0217588 A1 (43) Pub. Date: Jul. 28, 2016

(54) METHOD OF ADAPTIVE ARRAY COMPARISON FOR THE DETECTION AND CHARACTERIZATION OF PERIODIC MOTION

(71) Applicant: Jeffrey R. Hay, Louisville, KY (US)

(72) Inventor: Jeffrey R. Hay, Louisville, KY (US)

(21) Appl. No.: 14/757,259

(22) Filed: Dec. 9, 2015

Publication Classification

(51) Int. Cl. G06T 7/20 (2006.01)G06F 3/0484 (2006.01)

(52) U.S. Cl. G06T 7/204 (2013.01): G06F 3/04847 (2013.01); G06T 2200/24 (2013.01); G06T 2207/10016 (2013.01)

ABSTRACT

The Patent applicant stated...

- "Analyse the video file by an adaptive array comparison technique to find a selected number of pixels that have the most intensity variation over time, i.e., the most physical movement."
- "Find the best frames to use (i.e., optimal frame spacing) to maximize the frame differences and best determine the periodicity of the movement."
- "Apply various mathematical functions, such as fast Fourier transform analysis (FFT) to derive richer physical information from the observed movement waveform."
- "To isolate and reject wanted and unwanted signals respectively."

FIG. 7

FIG. 8

Which displacement can be resolved, with standard lenses?

Target distance from camera	Lens focal lenght	Displacement resolution
2 meters	25 mm	1 micron
2 meters	50 mm	0.5 micron
1 meter	50 mm	0.25 micron
100 meters	100 mm	12.5 micron

We can then use the MA for:

- Typical low and middle frequency issues (imbalance, misalignment, resonance, ...)
- Periodical or non periodical motions
- Large motion analysis
- ODS and Modal Analysis
- ...but normally NOT for bearings and gearboxes issues (very high frequencies and very low displacement)

Official Partner

What can we do with MA, in fact?

- Measure vwaveforms and spectra
- Filter in frequency
- Rebuild the motion
- Amplify and slow down
- ...and much more...

Visual frequency detection...

Visual phase detection...

It is NOT ALWAYS a replacement for "old fashion" vibration analysis!

It is something that sometimes replaces and sometimes integrates standard measurement technology.

PROS...

- ✓ Allows motion frequency separation
- Provide quick analysis on high complexity systems
- Measurement points can be quickly moved
- ✓ Can be used at a distance, on dangerous components, on high temperature surfaces, ...
- ✓ It is the only viable mesurement & analysis system in several situations
- ✓ Improve communication dramatically

CONS...

- ✓ Continuous light is necessary
- ✓ Frequency range is limited by camera, light, displacement
- ✓ It is less accurate than accelerometers or laser
- ✓ Long term acquisitions require stable light condition
- ✓ Spot checks are less repeatable between inspections, due to differences in positioning
- ✓ Data size can be an issue

What we typically investigate?

- ✓ Spot issues e.g. resonances, structural failures, etc.
- Passenger comfort improvement
- ✓ Sound impact reduction (e.g. in urban environment)

Official Partner

Amplification Factor: 500 Playback Speed: 40 fps

Some difficult or uncommon analysis

Gas power generation plant: time lapse thermal growth

Frequency (Hz)

Courtesy of Space Research and Planetology division - University of Bern

Petrochemical furnace: T air: 980°C – T pipe: 580°C

Transient motion analysis

Picture from Emag website

