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This Presentation IEJI%?L'!L

O Motivation
« Prognostics: important part of predictive (smart) maintenance
« Easy-to-use (commercial) Multiphysics simulation tools for nonlinear partial differential equations exist

0 Content
« Modeling aging/degradation with stochastic differential equations and the Fokker-Planck equation
« Reliability and Remaining Useful Lifetime (RUL)
« Correction steps — update with new information (e.g., from diagnostics)
« Examples and applicability extensions
— Brownian motion with drift
— Auxiliary variables

— Variable failure boundaries
— Chance failures in addition to wear-out failures

Ref.: T. C. and F. Macedo, “Theory of Fokker-Planck Equations for Reliability and Remaining Useful Lifetime Prognostics”, accepted by IEEE Transactions on Reliability, 2023
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Device Model Variables and Parameters, and Condition Space HITACHI
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O Time dependent state variable q_5 € State Space (continuous time t)

O Device model parameters [i(?) € Parameter Space ) (Condition Space)

U Device operations represented by solutions qgﬁ(p) (t) of dynamical system
Condition space

d¢ = ;=2 -
ac = Fo(d AP, t) Uy

Acceptance region

{2y

O Malfunction/failure = inacceptable behavior q_b)ﬁ(p) (t)

I ﬁ(D) € (1, (Acceptance region) -> device can perform its task

v

H1
- 1f f(P) ¢ Q,-> device fails to perform its task
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Examples
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Electro-magneto-mechanical actuator

I Latch

T

Coil current

q_5 _ (DIC) _ (mech?(r)liilc?lllsl?eorfflinate)

uP) = required inception force (spring force, static friction, ...)

Malfunction: unable to act with sufficient force and
within sufficient time
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Battery (other energy storage devices analogous)

Load

(open circuit voltage)

Capacity €

R‘ ——

ESR R

(Equivalent Series Resistance)

¢ = Q (state of charge, SOH)

~

g® = (C) - or normalized wrt beginning of life: (A 5

~

R

_ _ . ener
Malfunction: unable to provide sufficient (powg)
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Degradation and End of Life HITACHI
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Q Beginning of Life (BOL): initial state (i(0) = iz, Of aging model variables

Reflecting boundary

Q Aging or degradation: (slow) motion ji(t) in acceptance region

C e “d gy 2 EOL-boundary
* Deterministic part (“drift”, f)

» Stochastic part (“random walk”, white noise f(t ))
End of Life
(EOL)

(Langevin equation,

l’_l') 2 - e N4
E = f(:u' t; ?) + g('u; a)€(t) stochastic differential equation)

(aging model parameters)

(note: aging variable space is generally larger than device model parameter space!)

O When boundary 9, of acceptance region is reached:

« Impermeable: reflecting boundaries
« Malfunctions, End of Life (EOL): absorbing boundaries
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Langevin Equation (LE) and Fokker-Planck Equation (FPE) ,,!;'Jl%?,';!,!f

O FPE for probability density p(i,t) (individual device: “Bayesian interpretation”)

P loape, =0

Op R z d 0
T _y .7 — _ —(D..p) - £

out
EOL

FPE “equivalent” to LE (“diffusion < Brownian motion”)

— Diffusion matrix (D;; = D;;(g); Altd/Stratonovich-dilemmad\)
— Drift-flow velocity f (i1, t) (can be arbitrarily nonlinear)

Initial condition at BOL

— p(,t = 0) = pgoy (1) (usually) normalized in Q4

Boundary Conditions

— Reflecting/insulating boundary: vanishing normal component of j, at boundary 90,4
— Absorbing EOL boundary: p = 0 at 0424

Distribution (remains) generally not Gaussian (boundary conditions, nonlinearities, ...)

Publc ®Hitachi Energy

6 © 2023 Hitachi Energy. All rights reserved.



Reliability and Remaining Useful Life HITACHI
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Q Reliability from p (i, t)

* R(t) = survival probability = probability to be in £2,

R(t) = f du p(i, O

Qp

0 Remaining Useful Lifetime (RUL) R*o.g - R >R*

0.8

« Reliability limit R*: device condition acceptable iff R > R* - |

0.6
« RUL=timeuntii R = R*

0.5

04 r

Reliability R

RUL(t) — tEOL —t t}:-::l:.‘l

03
RUL(Y)

A

sl RUL(t)

0.1F

~ v

teoL
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Intermediate Information Gain: Correction Step HITACHI
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O Up to now: Prediction step: p(jii, t) calculated from FPE until (discrete) time t,,, =2 predicted condition probability at t,,

p<(itm) = _lim b tm =€) t

O Additional information gain (monitoring, diagnostics) at t = t,,
on i - likelihood

P (i, t) p(i, t) i

U Correction step Q.
Update p with Bayesian inference

Posterior (initial condition for
subsequent calculation) ]

Posterior “Likelihood” prior

p> (ﬁr tm) = C pm (/-_ir tm)p< (ﬁ' tm)

Likelihood
(monitored)

Prior
(calculated)

Normalization constant C

L Continue to solve the FPE with “new initial condition”

p(, t)|e=¢,, = >, t)
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Summary for 1d Condition Variable Example, known a = (f, D)

u/ Ugor

Q Aging model (Brownian motion with drift)
Langevin equation (u = 0)

Here: simulation of stochastic differential eq.

1.2

08r

0.6

0.4

0.2

du
E—f‘i'mf(t)

monitoring

0.2 0.4 0.6 0.8 1

d
t /tpo
. (d) = deterministic
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1.2

Simulation of partial differential equation

O Fokker-Planck equation
(drift-diffusion)

dp 0 dp
L TR
ot Jdu\ odu

n t1 = tgoL

(Dop/op—fv)| _ =0

reflecting/insulating

04 0.5 0.6 0.7

u/ teor

HEOL
absorbing

RUL /t9).
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O Reliability and Lifetime

HEOL

R(t) = j du p(Q, £)

0

Calculation of RUL from reliability

d
t/téo%
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Auxiliary Aging Variables

What if some of the aging model parameter values @ are not known or variable? - Consider as additional stochastic variables

O Simple example: rate f of previous model is stochastic variable

o f extension of aging model variable U 2 Langevin equations O Fokker-Planck (2d, in rectangle)
space p
_ = 1y +2D16: () a_P:i(Dla_P_uzp>+ 0 (DZ ap).
H2 = . at oy oy us oy
h2 _ |
FEM Simulation (here Comsol) dt 2D82(t) 1F
r 3 09_
0.8F
- i 0.7t
1 - _ 0.6f
€N ‘_’ = m 0.5¢
= — o 0.4
o) 0.3
3 3 3
L LL L 0.1F
a) b) c) o, ! | : .
0 > 0 0.5 1 1.5 2
0 pa/ Mggm L t/ tg‘;)L

Early arrival by higher velocity tail leads to decrease of reliability before mean time to failure
Publi . -
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HITACHI

Variable Failure Boundaries and Stress-Strength Reliability Inspire the Next

What if uzp; is variable ? - Consider strength as additional stochastic aging model variable

O Example: stress-strength reliability O Langevin equations O Fokker-Planck (), = triangle)
o strength p, % = fi(pu, 12) + \/2_D1<>C1(t) a_p _ 22: d <6(ka) _f p) .
o sless Ky % = fo(p, uz) + \/Z_szz(t) ot k=1 O\ Ot ‘
Stress dependent strength degradation 1

0.9k Acceptance region averages

0.8r
0.7r
0.6+
0.5

1 R
(V)a = P j y(i)p du

Qap

Example with a degradation
acceleration threshold p;,

0.4+
0.3r

Stress u,

0.2r

> 0.1r

(0]%

Strength uy 0 1

FEM Simulation (Comsol)
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Including Chance Failures and Correlation ]EJI‘%,?{._!,!%

What if chance failures (statistical failures during useful life) need to be included in addition to wear-out (degradation) failures?
—> generalize FTE by adding sink term (= decay rate, hazard)

U Langevin equations with nondiagonal q) O Fokker-Planck with sink (in rectangle)

J Example: Battery Aging

. . dus _ + /2D, & (t) ap =9 [ 0
o Normalized capacity u, e = Sl i) 151 == za— za—(Dijp) —£p | = hep
o Normalized inverse ESR u, % = £, (i, tty) + 2Dy, (£)+ Y/ 2D1 &, () & 0p \ £ 0
) _ Local conservation law as before, decay rate
FEM Simulation (Comsol) now with y —dependent cross diffusion  hazard h,
4 T T T (non-diagonal diffusion matrix)
1 BOL
. ° .
Acceptance region averages
~N / 1 -
S) a=7 | yWpdu
f- o
'S Acceptance region integrals
b N
Hi,E0L = 0.7 <y> = j y(#)p d#
05 H2,e0L = 0.5 Q4
. I :
0.7 H1 1 . . .
s @ Hitachi Energy
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Summary and Conclusion HITACHI
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O Convenient framework for prognostics: Fokker-Planck Equation (FPE)

O Prediction step
« Degradation modeling with Langevin Equation (deterministic and stochastic part)
 End of Life (EOL) boundaries in acceptance region of aging model variable space (or condition space)
* FPE solved for probability distribution in acceptance region with absorbing EOL boundary conditions
* Reliability calculated by integration of probability density in acceptance region

« Determination of remaining useful life (RUL) from prescribed reliability limit value

O Correction step
« Update probabilities with Bayesian inference when additional information is obtained

. (not discussed in this presentation)
O Extensions

« Additional auxiliary stochastic aging variables can be introduced (e.g., variable failure thresholds, colored noise, ...)
» Chance failures can be modeled with a sink term in the FPE

O For dimension < 3 standard commercial PDE simulation tools (here Comsol, Finite Element Method) can be
used for arbitrarily coupled and nonlinear aging models.
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