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Background & Motivation
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Classic Transfer-Learning is possible when defective data of the target class is available.
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Classic Transfer-Learning is not possible when no defective data of the target class is available.

What to do?
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Background & Motivation
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Defect features are similar. Though, background is different.
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Background & Motivation
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How to combine the Defect Features from the known Source Domain with the Background Features of the

Target Domain?
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Agenda

Background & Data of interest is often underrepresented during training.
Motivation
Approach Data from different contexts with related features can be

used to bridge the gap.

Results & Helpful for different domains. /}:

Discussion
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Approach
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Approach
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How to combine the Defect Features from the known Source Domain with the Background Features of the

Target Domain?
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Approach
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How to combine the Defect Features from the known Source Domain with the Background Features of the

Target Domain?
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Approach
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Adapting the loss function bridges the gap between domains.
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Approach
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Agenda

Background & Data of interest is often underrepresented during training.
Motivation
Approach Data from different contexts with related features can be

used to bridge the gap.

Results & Helpful for different domains. /}:

Discussion
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Results — Baseline: Domain Transfer
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Domain Transfer works, when the domains are closely related.
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Results — Baseline: Mixed Datasets
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Mixed datasets confuse the model and do not lead to a domain transfer.
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Results — New Loss
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Domain Adaption is possible: Defective Data is successfully classified during inference.
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Summary and Outlook

Loss function seems to be the key.

We can identify defective instances without defective data during training by transfer of
features across domains.

Key Findings

Especially useful if features of interest are similar while background is different.

How to use this approach in the context of object detection?
Can this be used for e.g. federated learning to combine feature spaces?

Can this be applied on time series data as well?




