

Autonomous Inspection with Drones done Fast

Davide Scaramuzza

http://rpg.ifi.uzh.ch/

Today's Global Commercial Drone Market: 24 Billion USD

The global commercial drone market is expected to reach \$500 billions by 2028

Inspection

Agriculture

Media & Entertainment

Law enforcement

99% commercial drones is controlled by human pilots

99% commercial drones is controlled by human pilots

Voliro (2019) – Contact Inspection Drone (remote controlled).
Uses tiltable motors for omnidirectional navigation, scanning, drilling, and painting

Can drones do autonomous inspection and maintenance?

EU Project AERIAL-CORE (2020-2023) Autonomous Inspection and Maintenance of Power Lines by Drones

https://aerial-core.eu/

EU Project AERIAL-CORE (2020-2023) Autonomous Inspection and Maintenance of Power Lines by Drones

https://aerial-core.eu/

EU Project AERIAL-CORE (2020-2023) Autonomous Inspection and Maintenance of Power Lines by Drones

https://aerial-core.eu/

EU Project AutoAssess (2024-2027) Autonomous Inspection of Ballast Tanks of Container Ships

How can drones navigate autonomously?

Using cameras

Vision-based Navigation

2009: First Vision-based Autonomous Flight

European Micro Aerial Vehicle competition, Sep. 9, 2009

Bloesch, Weiss, Scaramuzza, Siegwart, Vision Based MAV Navigation in Unknown and Unstructured Environment, ICRA'10 Weiss, Scaramuzza, Siegwart, Monocular-SLAM-based Navigation for Autonomous Micro Helicopters in GPS-denied Environments, JFR'11

Today

NASA Mars Helicopter

SKYDIO: Bridge inspection

VERITY: inventory management

SUIND: crop spraying

Vision is making flying robots more autonomous, but human pilots are still preferred in most applications

Autonomous drones are still far from human-pilot performance regarding agility, versatility, robustness

What does it take to fly as agile as or better than human pilots?

WARNING! This drone is NOT autonomous; it is operated by a human pilot. **Human pilots take years** to become **agile**

Why Agile? To Increase Productivity

- Multi-rotor drone's battery limited to 30 minutes
- By flying faster, they can fly farther [1]

Current inspection drones fly slow:

- Safety/Robustness
- Motion Blur
- Frequent Battery Replacement

^[1] Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, IEEE RAL, 2022. PDF.

Vision-based Drone Control Architecture

Vision-based Drone Control Architecture

Fragile to imperfect perception and unmodelled effects, and slow

Can we Learn a Navigation Policy?

Key issues with this architecture:

- Too sample inefficient to be trained on a physical drone
- Limited interpretability

How can we augment the traditional robotic cycle with learning-based methods?

Key Questions

- Should we train it with or without supervision?
- How do we get enough training data? Can we learn in simulation?
- How do we address the simulation to reality gap?

Tasks

Autonomous Drone Acrobatics

Navigation in the wild

Autonomous Drone Racing

Thanks to Machine Learning we reached unprecedented agility

- The learned policy is more robust against sensor noise than traditional baselines
- Up to 2x faster than traditional approaches

This AI-controlled drone is fully autonomous and uses onboard vision and computation

...by training only in in simulation (zero shot)

Open Challenge

- The presented approaches still rely on labeled expert data
- What if we cannot create such an expert?

Autonomous Drone Acrobatics

Navigation in the wild

Autonomous Drone Racing

Can we outrace the best human pilot?

After 7 years of work, in June 2022, we invited the world champions of drone racing

Alex Vanover

DRL World

Champion

BitmattaMultiGP
International

World Champion

Thomas

Marvin Schaepper

Swiss Drone League Champion

Al Drone

Both human and AI drones were identical

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023

Drone Racing

Autonomous Drone

"Swift"

World's Best Human Pilots

A. Vanover, T. Bitmatta, M. Schaepper

Trained with RL in Simulation and refined with Data Collected in the Real World

Kaufmann, Bauersfeld, Loquercio, Mueller, Koltun, Scaramuzza, Champion-Level Drone Racing using Deep Reinforcement Learning, Nature, 2023

Modeling Aerodynamic Effects

- Aerodynamic effects: Rotor-to-rotor interactions, turbulences
- Neural network to model **residual forces and torques** unexplained by first-principles models (BEM)
- Improves physics realism wrt classic drone simulators by up to 60%

nature

Offset agreement Overhaul pricing of carbon credits to help

Dining companions Corals devour algal partners when food fund climate projects supplies run low

Sentence synthesis Brain implants show promise in rendering speech from thoughts

Agile Flight: where are we?

Future of Drones?

The agility of a robot is limited by the latency of the sensors and algorithms

Can we create a low-latency perception pipeline?

Yes, using event cameras

What is an Event Camera?

- It is camera that measures only motion in the scene
- Key advantages:
 - 1. Low-latency ($\sim 1 \mu s$)
 - Low bandwidth
 - 3. Negligible motion blur
 - 4. Very high dynamic range

Traditional vision algorithms cannot be directly applied!

[2] Gallego et al., Event-based Vision: A Survey, T-PAMI, 2020

^[1] Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008

Event cameras unlock scenarios inaccessible to standard cameras

Keeping drones Flying when a Rotor Fails

- Quadrotors subject to full rotor failure require accurate position estimates to avoid crashing
- Event cameras are not affected by motion blur

Dodging Dynamic Objects

- Perception latency: 3.5 ms
- Works with relative speeds of up to 10 m/s

Falanga, Kleber, Scaramuzza, Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020

Outlook: Combining Events and Frames for Ultimate Performance

Tulyakov, Gehrig, et al., TimeLens: Event-based Video Frame Interpolation, CVPR'21. PDF. Video. Code. Featured on Two-Minute-Papers: Video.

Conventional Image-Based Inspection Methods

LINA Project: Funded by Canton of Zurich www.lina-switzerland.ch

- Largest European infrastructure for the development, safe testing, and certification of autonomous systems, equipped with digital twin simulations and 5G compute zone
- Location: Dubendorf airport, Canton of Zurich
- Automatic booking and scheduling approval
 process and the outdoor test area

Team:

SOMNIACS

Agilicious – Open Hardware & Software for Agile Flight

- Easy transfer between prototyping in simulation and realworld deployment
- SoTA controller implementations:
 - Nonlinear MPC, DFBC
- Hardware-in-the-loop simulation
- Fast & accurate integrated simulation for testing & RL
- Proved on hundreds of flight hours indoors and ourdoors
- Successfully used in >20 publications, e.g. SciRob, RA-L, T-RO, ICRA

https://agilicious.dev/

Thanks!

