

Monitoring and Management of Data Centers in the Internet-of-Things Era

Prof. David Atienza, Scientific Director of EcoCloud Center and Head of Embedded Systems Lab. (ESL), EPFL

David.Atienza@epfl.ch

https://ecocloud.epfl.ch/

Current Information and Communication Technology (IT) Ecosystem

- ICT ecosystem encompasses:
 - Multi-level computing: edge, switching centers and cloud
 - Core part of computing at hyperscale data centers (DCs)

Why an energy problem? Power Density in Computing Systems: "Economic Meltdown of Moore's Law"

- 45 years of IT industry & Moore's law being discontinued
 - 2x more transistors every 2 years, quadratic energy reduction (voltage)
 - Voltages have leveled, ITRS projections in 2000 for voltage levels in 2011 were 40% lower...

Ineffective Data Centers: Large Energy Expenditure... And Not Even Well Used!

- Cloud computing is... Growing always!
 - Amazon: \$1 billion profits annually
 - Infrastructure as a Service (laaS):
 Data Centers (DCs) = essence of Cloud

Datacenters electricity can reach 8% worldwide electricity by 2030 [IDC]

Google

But typically used at 60-65% of capacity!

Current DC Design Is Not Optimal

- Segregation of tasks: multi-scale modeling problem (components choice, applications, etc.)
 - Not clear communication of knowledge from one layer to another
 - IT equipment and cooling (over)provisioned separately to increase resilience
- Current DCs are energy inefficient
 - Power-cooling need as much energy as IT equipment... and thrown away

For an 18 MW datacenter: Up to US\$ 2.5M wasted per year!

YINS: Thermal-Aware Design for Next Generation Energy-Efficient Data Centers

Phase 1)

oT Solution

- Use of Internet of Things (IoT) to monitor computing infrastructure: PMSM
- Thermal/Power/Faults maps: 3D-ICE open-source multi-scale compact simulator
- Two-step optimization approach
 - a) TheSPoT: Thermal Stress-Aware Power and Thermal Management
 - b) MAMUT: ML-based runtime management using multi-agent reinforcement learning (RL)

© ESL/EPFL 2022

Phase 3) Machine Learning Based Run-Time Management

Power Monitor System and Management (PMSM)

- Real-time monitoring and automatic alerts for 3 DCs (>7,000 servers)
 - Servers monitoring using on-board sensors
 - Rack: extra IoT sensors for temp., humid. and vibrations
- System-level data center modeling/maintenance
 - Historical servers power consumption analysis: daily, weekly, monthly, ...
 - Faults detection: rack circuit breaker failure, power overload, "zombie" servers,...

Power Monitor System and Management (PMSM)

Example Case Study: Detailed Energy Use View for Different Racks in one Credit Suisse DC

Less than 20% of servers with high/full utilization, why? System reliability challenge!

Mean Time To Failure (MTTF) Factors: Reliability Analysis for Servers

Traditionally hot spots (peak/average) temperature in CMOS-based electronics

• Mechanisms: Time-Dependent Dielectric Breakdown (TDDB),

Electromigration (EM), etc.

New Mechanisms in servers: Thermal Stress

- Spatial Thermal Gradient (STG)
- Temporal Thermal Gradient (TTG)
- Thermal Cycling (TC)

TheSPoT: Thermal Stress-Aware Power and Thermal Management

Results: TheSPot vs State-of-the-Art (SoA)

- Slightly higher total power in server
 - Thermal gradient less than 8°C

8-core server thermal modeling

MTTF improved by 49%!
But how do we improve utilization?

MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Tuning

- Actions (a):
 - Application: QoS, CU
 - Processor: Frequency
- States (s):
 - Application: PSNR, Bitrate, Op/s
 - Processor: Power, Temperature
- Formulation: $\alpha_t(s_t, a_t) \stackrel{\text{def}}{=} \text{Learning Rate}$ $\alpha_t(s_t, a_t) \propto \frac{1}{N(s_t, a_t)}$

Number visits

- 3 agents:
 - DVFS,
 - Quality Proc. (QP),
 - Number threads

Results: MAMUT vs. SoA

Server utilization reaching 95-97% with more types of Heterogeneous Racks (HR) to manage

40-50% less power per server than SoA (but with much higher resilience thanks to TheSpot!)

Conclusion

- "Green" (energy efficient) datacenters are key for ICT
 - Drastic increase of energy use on servers and cooling side
 - Sub-optimal design to prevent degraded performance/reliability
- Future: energy-reliability centric design = system-level
 - Multi-level modeling (utilization, energy, reliability, etc.)
 - Cross-layer optimizations
- IoT and Machine Learning to the rescue
 - PMSM: new sensors to understand DC operation and failures
 - TheSPoT: Thermal stress-aware power and thermal management to increase MTTF in servers (up to 49% improvement)
 - MARL: Multi-agent RL for efficient DC use (up to 97% server use)

© ESL/EPFL 2022 15

Future Challenges (1): Emerging Power Markets

- Integrating renewable energy on supply-side
 - EU Union targets to integrates over 20% share of renewables by 2025 [Bhringer 2019]

Challenge: high uncertainty to match supply and demand in the power grid (volatility and intermittency of renewables)

Goal: use demand-side capacity reserves, and dynamically adapt DCs power use when SLA allows it

Future Challenges (2): Modern Geo-Distributed and Green DCs

Geo-distributed DCs

- Multiple DCs in different locations connected through network
- Causes: increasing users' demands, data protection policies (e.g., GDPR)

And they must be green DCs!

- Coupled with renewable energy sources in each different places
- Different peaks for renewables

Conclusion

- "Green" (energy efficient) datacenters are key for ICT
 - Drastic increase of energy use on servers & Credit Suisse Zurich Datacenter Saves Up to
 - Sub-optimal design to prevent degraded pe 50% Electricity Thanks to Innovative Management System

- Future: energy-reliability centric design
 - Multi-level modeling (utilization, energy, reli
 - Cros
 Included in Eaton's Intelligence
 Platform for data centers since 2021
- IoT and Machine Learning to the rescue
 - PMSM: new sensors to understand
 - The SPoT: Thermal stress-aware po feedback system that adjusts the load on each server. to increase MTTF in servers (up to "Two servers running at 40% of their capacity each, co
 - MARL: Multi-agent RL for efficient C<sub>The system has already been implemented on the racks of some 5,200 servers in
 </sub>

By Ovidiu Sandru Modified date: May 30, 2017 • 120 🔻 1

An innovative method of saving the energy consume by data centers has been invented by EPFL scientists and applied for Credit Suisse in Switzerland. The solution, developed at the **Embedded Systems Laboratory at EPFL**, will save up to 50% of the energy currently used.

The **Power Monitor System and Management** uses a set of (probably

Hall) sensors connected to the server racks' main power cables and measures the current passing through. Then, the consumption is logged and sent to a software feedback system that adjusts the load on each server.

"Two servers running at 40% of their capacity each, consume much more than only one at 80%," said David Atienza, ESL director.

• The system has already been implemented on the racks of some 5,200 servers in Credit Suisse's Zurich datacenter. The institution had been planning such a "virtualization" approach for about six years.

© ESL/EPFL 2022 18

Thank You! Questions?

david.atienza@epfl.ch

Acknowledgements:

Nano-Tera.ch Swiss Engineering Programme Swiss National Science Foundation

European Commission

European Research Council

19

Key References and Bibliography (1/2)

Energy- and sustainability-aware design and scheduling of datacenters and Cloud computing systems

- D. Huang, A. Pahlevan, et al, "COCKTAIL: Multi-Core Co-Optimization Framework with Proactive Reliability Management", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (T-CAD), February 2022.
- A. Iranfar, M. Zapater, and D. Atienza, "Multi-Agent Reinforcement Learning for Hyperparameter Optimization of Convolutional Neural Networks", IEEE T-CAD, December 2021.
- A. Pahlevan, M. Zapater, A. K. Coskun, and D. Atienza, "ECOGreen: Electricity Cost Optimization for Green
 Datacenters in Emerging Power Markets", *IEEE Transactions on Sustainable Computing (T-SUSC)*, April/June
 2021.
- W. Simon, Y. Qureshi, et al., "BLADE: An in-Cache Computing Architecture for Edge Devices", *IEEE Transactions on Computers (TC)*, February 2020.
- K. Haghshenas, A. Pahlevan, M. Zapater, S. Mohammadi, D. Atienza, "MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers", *IEEE TSC*, July 2019.
- L. Costero, A. Iranfar, M. Zapater, et al., "MAMUT: Multi-Agent Reinforcement Learning for Efficient Real-Time Multi-User Video Transcoding", *Proc. of DATE*, March 2019.
- A. Iranfar, M. Zapater, D. Atienza, "Machine Learning-Based Quality-Aware Power and Thermal Management of Multistream HEVC Encoding on Multicore Servers", IEEE TPDS, October 2018.
- A. Pahlevan, X. Qu, M. Zapater, D. Atienza: "Integrating Heuristic and Machine-Learning Methods for Efficient Virtual Machine Allocation in Data Centers", IEEE T-CAD, August 2018.
- K. Kanoun, et al., "Big-Data Streaming Applications Scheduling Based on Staged Multi-Armed Bandits", IEEE TC, Dec. 2016.
- A. Pahlevan, P. Garcia, et al., "Exploiting CPU-Load and Data Correlations in Multi-Objective VM Placement for Geo-Distributed Data Centers", *Proc. of DATE*, March 2016.
- A. Pahlevan, J. Picorel, et al., "Towards Near-Threshold Server Processors", Proc. of DATE, March 2016.

Key References and Bibliography (2/2)

2D/3D Thermal modeling and simulation for many-core SoCs

- Y. M. Qureshi, et al., "Gem5-X: A Many-Core Heterogeneous Simulation Platform for Architectural Exploration and Optimization", ACM Transactions on Architecture and Code Optimization (TACO), December 2021. (https://esl.epfl.ch/research/2d-3d-system-on-chip/gem5-x/)
- F, Terraneo, A. Leva, et al., "3D-ICE 3.0: efficient nonlinear MPSoC thermal simulation with pluggable heat sink models", *IEEE T-CAD*, December 2021, (http://esl.epfl.ch/3d-ice.html).
- J. Ranieri, A. Vincenzi, et al., "Near-Optimal Thermal Monitoring Framework for Many-Core Systems-on-Chip", *IEEE Trans. of Computers (TC)*, Nov. 2015.
- S. Raghav, C. Pinto, et al., "GPU Acceleration for simulating massively parallel many-core platforms", *IEEE TPDS*, Vol. 26, Nr. 5, pp. 1336-1349, May 2015.
- A. Sridhar, et al., "A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs", *IEEE T-CAD*, Aug. 2014.
- A. Sridhar, et al., "Neural Network-Based Thermal Simulation of Integrated Circuits on GPUs", IEEE T-CAD, Jan.
 2012

Microfluidic based power-cooling delivery for 2D/3D MPSoCs

- H. Najibi, J. Hunter, et al., "Enabling Optimal Power Generation of Flow Cell Arrays in 3D MPSoC with On-Chip Switched Capacitor Converters", *IEEE ISVLSI*, 2020.
- A. Andreev, A. Sridhar, M. M. Sabry, M. Zapater, P. Ruch, B. Michel, and D. Atienza, "PowerCool: Simulation of Cooling and Powering of 3D MPSoCs with Integrated Flow Cell Arrays," *IEEE Trans. on Computers*, 2018.
- A. Seuret, et al., "Design of a two-phase gravity-driven micro-scale thermosyphon cooling system for highperformance computing data centers", *Proc. of ITHERM*, June 2018.
- A. Sridhar, M. Sabry, P. Ruch, D. Atienza, B. Michel, "PowerCool: Simulation of Integrated Microfluidic Power Generation in Bright Silicon MPSoCs", *Proc. of ICCAD*, November 2014.

© ESL/EPFL 2022