Intelligent Track Maintenance Works

Assoc.Prof. Dipl.-Ing. Dr. techn. Stefan Marschnig

Intelligent Maintenance Conference, 07. September 2021, Zurich
Prologue

Maintenance is...

- Inspection
- Failure Repair
- Maintenance
- (partly) Renewal | Improvement

Condition-based Maintenance

- Measuring
 - Automatized & Loaded | Standardised & Re-producible
- Post-Processing
 - Positioning & Precise-Positioning | Outlier Detection & Cleansing

Predictive Maintenance

- Data Analysis I
 - Descriptive | Statistics (Regressions) | Prognosis

Prescriptive Maintenance

- Data Analysis II (Time Series netwide)
 - Descriptive | Statistics (Regressions & Matrices) | Prognosis (Life Cycle)

= Intelligent Maintenance? Intelligent Maintenance Planning...
Prescriptive Maintenance

The main aspect of this next step in maintenance planning is the analysis of the asset beyond the next maintenance intervention.

We forecast how the asset will behave due to the maintenance foreseen.

Topics:
- Maintenance Type
- Intervention Level
- Quality Improvement

Descriptive data analysis only works with fixed „parameters“

Analysis executed for track tamping (ballast maintenance):
- Strong influence of the intervention level on quality reached after maintenance
- Strong influence of the intervention level on quality deterioration after maintenance

Maintenance planning (prescriptive) needs to base on variable intervention levels → today’s regulations?

Quality improvement as statistical, average value in descriptive modelling

Paradox: We know that quality and its behaviour over time is highly variable, but we execute maintenance with constant parameters
Time to move on towards intelligent Maintenance Works!

Desired Maintenance Process:

- Maintenance Planning | Prescriptive Maintenance \rightarrow optimal point in time for Maintenance
- Detailed Assessment of current Asset/Component Condition
 Measuring and Analysis live(!) on-board the Maintenance Machinery!
- Maintenance Execution due to current Asset/Component Condition
 Defining Machine Settings and Working Speed
- On-board Quality Control
- Upload of Asset Condition Data for back-office Analysis (Prescriptive Maintenance)
Track Tamping

- Maintenance Planning
- Detailed Assessment of current Ballast Condition

The maintenance work Levelling-Lining-Lifting-Tamping is executed in order to re-establish track geometry in vertical and lateral direction.

Tamping treads the ballast bed, but does not maintain the ballast

Tamping needs certain ballast properties → Ballast Assessment
Ballast Assessment

Ballast assessment is a tricky job as we do not measure the ballast properties, but the (relative) geometry of the ballast bed in standard inspection.

Special analyses help to get a good estimate on the ballast condition from the wave-length specific longitudinal measurement (Fractal analysis).

Ground Penetrating Radar can also provide data for a ballast condition assessment – but not as a standardised, frequent and netwide measuring up to now.

→ Assess ballast quality while tamping: the BETamp Project (EBW with P&T, ÖBB and SBB)

Example: it needs a higher penetration force in case of poor ballast

First Task: Learn which parameters are good indicators for the “ballast quality”
Track Tamping

Maintenance Planning

Detailed Assessment of current Ballast Condition

The maintenance work Levelling-Lining-Lifting-Tamping is executed in order to re-establish track geometry in vertical and lateral direction.

Tamping treads the ballast bed, but does not maintain the ballast

Tamping needs certain ballast properties → ballast assessment
Tamping also deteriorate ballast quality

Maintenance Execution due to current Ballast Condition

Defining Squeezing Force, Squeezing Time, Frequency, Number of Penetrations → Working Speed

On-board Quality Control

Upload of machine settings used and measured forces → back-office Analysis →
estimated/expected Quality Improvement of next Tamping → Tamping still the right Choice? (or Ballast Cleaning?)

Again, it will take years, but it’s worth the effort!
(And we will be faster due to our new tools and skills)
Intelligent Track Maintenance Works

For other maintenance works, it might be less sophisticated.

Rail Grinding

- Maintenance Planning | Prescriptive Maintenance \rightarrow constant intervention level (e.g. 1mm crack depth)
- On-board Quality Control (crack-free rail)
- Maintenance Execution in accordance with Component Condition
 - **Working Speed** \rightarrow **Temperature** \rightarrow **Pre-damage of Rail Surface (White Edging Layer)**
Intelligent Track Maintenance of tomorrow will be data-driven, algorithm-based Maintenance Planning based upon a long-term Optimisation, technically and economically.

And the biggest challenges will be to get this implemented at the infrastructure managers.