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Prognostics

« Adopting condition-based maintenance strategies, instead of time-
based maintenance

« Optimally scheduling maintenance

« Optimally planning for spare components

« Reconfiguring the system to avoid using the component before it fails
* Prolonging component life by modifying how the component is used

* Optimally plan or replan a mission

« System operations can be optimized in a variety of ways












Current State of the Art

* Results tend to be intuitive

* Models can be reused

 If incorporated early enough
in the design process, can
drive sensor requirements
Computationally efficient to

implement

Paris-Erdogan Crack
Growth Model

Taylor tool wear model
Corrosion model
Abrasion model

+ Easy and Fast to implement

+ May identify relationships
that were not previously
considered

Regression analysis

Neural Networks (NN)
Bayesian updates
Relevance vector machines
G




Model-based prognostics

« State vector includes dynamics of normal and
degradation process

ry = Axp_1 + Bug—1 + wi—1

Yr = Hxp + vg
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» EOL defined at time in which performance
variable cross failure threshold
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Model-based prognostics

« Tracking of health state based on % Weasured
157 O Filtered t =116
measurements o L——Predicted P
» Forecasting of health state until failure o 0120 10 w0 150 0 10 10 190
threshold is crossed j‘; PR
« Compute RUL as function of EOL 10} | ' {7139
defined at time failure threshold is o o w0 wme o 0 1o w0 1o
crossed 21 |
15F
10
L@ . ® ‘ ‘ ‘ ‘ ‘
110 120 130 140 150 160 170 180 190
20
15F
10 &

5 Il Il Il Il Il Il J
110 120 130 140 150 160 170 180 190
Aging time (hr)



Algorithm and Model Development TRL
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RUL Predictions using GPR
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Prior Work

Residuals

Feature
Engineering

System Model
+
System Kalman Filter
Input
Real Process

Overall architecture of the residual-based
hybrid diagnostics (Rausch et al., 2005).
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(Hanachi et al., 2017).



Deep Learning + Physics Model Calibration

Model Calibration
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Overall architecture of the hybrid prognostics framework

Real Process

fusing physics-based and deep learning models.

Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel,

" Reality Gap

o Vi>del Calibration

Model
Parameters

Physics-based
System Model

Calibration Policy

Olga Fink, “Real-Time Model Calibration with Deep Reinforcement Learning”,_arXiv:2006.04001

Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, “Fusing Physics-based and Deep Learning Models for Prognostics”, arXiv:2003.00732
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Physics + RNN
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Overall architecture of the physics-informed

Physics-informed neural network framework for
recurrent neural network

main bearing fatigue and grease degradation

Nascimento, R. G., & Viana, F. A. (2019). Fleet prognosis with physics-informed recurrent neural networks. In Structural health monitoring 2019:
Enabling intelligent life-cycle health management for industry internet of things (iiot) - proceedings of the 12" international workshop on structural
health monitoring (Vol. 2, pp. 1740-1747).

Y. A. Yucesan and F. A. C. Viana, "A physics-informed neural network for wind turbine main bearing fatigue," International Journal of Prognostics and
Health Management, Vol. 11 (1), 2020. (ISSN: 2153-2648).



Next Steps : Looking Ahead




Next Steps : Looking Ahead

» High Model Granularity
* Onboard/DM

» Computational cost

* Real time

ML/Data Driven
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» System Complexity
* Available Data




Next Steps : Looking Ahead

» System Complexity
* Low Model Granularity

ML/Data Driven

+ Data Spectrum availability

 Offline/Online
» Computational cost




Concluding Remarks

* Prognostics helps enable
— Systems safe and efficient
— Decision making

* Hybrid Approaches

— Physics based methods can be combined with machine learning to determine and evaluate

models for complex physical systems.
High Fidelity simulation
Field and Tests

— These models enable in verification and validation for autonomy in shorter period of time than
current state of the art.
Computational tools are two slow.

— With availability of test and field data, machine learning able to blend the digital data fabric for
model update

— Uncertainty Quantification
* Framework still in early stages and needs maturation
* Requirements for autonomous systems
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