From Single-Asset Health Monitoring to dynamic Fleet Maintenance

Pierre Dersin, Ph.D.
PHM Director, ALSTOM Digital Mobility

04/09/2018
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways
- Problem Formulation: dynamic Resource allocation
- Problem Resolution 1: a linear Programming Model
- Problem Resolution 2: a multi-agent System
- Some preliminary Results
- Future Developments
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways

- Problem Formulation: dynamic Resource allocation

- Problem Resolution 1: a simple linear Programming Model

- Problem Resolution 2: a multi-agent System

- Some preliminary Results

- Future Developments
Managing the Health of one individual Asset

The search for the best maintenance policy for ONE asset can be seen as:
How to maintain just enough to avoid failures, rather than over-maintaining.

Minimize Cost subject to Availability constraint

Predictive Maintenance: "not too early, not too late"
New Challenges when moving from individual Asset to Fleet

- An individual asset can be studied in a lab environment (test bench)
- A fleet of assets (all passenger doors on 600 trains, 1000 point machines in a country…)
 - Is comprised of numerous assets, each with its own profile, environment and context
 - Subject to operational constraints

Can be studied only in the actual field environment
The Vision: by 20XX (xx=?), in our industry

- **Real-time**
 - Every railway asset in the world will be remotely monitored in real-time

- **Dynamic**
 - Maintenance schedules will be created dynamically based on the predicted condition of each single component

- **Automatic**
 - Workload balancing in depots will be done automatically
What’s needed to fulfil that vision

Missions (Operations constraints)

I1: rolling stock and infrastructure
I2: maintenance resources
I3: human resources
I4: health indicators or RULs with uncertainties

Dynamic Maintenance decisions

01: train routing
02: predictive maintenance planning
03: personnel planning
04: performance indicators (cost, quality of service, confidence, ...)

Predictive maintenance for a fleet of assets with material and human resource constraints
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways
- Problem Formulation: dynamic Resource allocation
 - Problem Resolution 1: a simple linear Programming Model
 - Problem Resolution 2: a multi-agent System
- Some preliminary Results
- Future Developments
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways

- Problem Formulation: dynamic Resource allocation

- Problem Resolution 1: a simple linear Programming Model
- Problem Resolution 2: a multi-agent System

- Some preliminary Results

- Future Developments
Dynamic Resource Allocation

Systematic Maintenance ➔ Maintenance Plan ➔ Depot / Field Constraints

Corrective Maintenance ➔ Corrective Notification ➔ DEMAND OPTIMIZER

Predictive Maintenance ➔ Predictive Notification ➔ MMIS Backlog

Diagramming

PHM Virtual Prototyping - 18/08/2018 – P 10

© ALSTOM 2015. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways
- Problem Formulation: dynamic Resource allocation
- Problem Resolution 1: a linear Programming Model
- Problem Resolution 2: a multi-agent System
- Some preliminary Results
- Future Developments
Resolution based on Linear Programming – Assumptions

Network and infrastructure
- track sections, turnouts, ...

Operation
- P tramways per day
 - P missions per day
 - (1 mission = 1 set of rides assigned to 1 tramway)
 - each mission is associated to a degradation rate δ

Depot
- m tramways
 - m tramways of same type (interchangeable)
 - granularity:
 - system – tramway
 - sub-system – air conditioning system
 - component – filter
 - 1 RUL value for each tramway (RUL of the limiting component)
 - no degradation when not in use
 - the degradation of a sub-system has no impact on the degradation of other sub-systems

Maintenance center
- human resources
- tools
- spare parts

Maintenance planning
- maintenance capacity expressed as a number of tramways that can be maintained each day
 - c maintenance operations per day
 - duration of each maintenance operation: 1 day

- maintenance dates
- maintenance operations (type, grouping, ...)
- choice of tramways to send to revenue service each day

Network and infrastructure
- track sections, turnouts, ...

resolution based on Linear Programming
Resolution based on Linear Programming – use case

○ Assumptions: 4 tramways, 1 sub-system per tramway for predictive maintenance

○ Simulations: degradation for each RS unit follows a Weibull distribution

\[k_1 = 3, \lambda_1 = 21, \theta_1 = -1 \] \[k_2 = 8, \lambda_2 = 18, \theta_2 = -14 \] \[k_3 = 6, \lambda_3 = 9, \theta_3 = 0 \] \[k_4 = 6, \lambda_4 = 10, \theta_4 = -13 \]
Resolution based on Linear Programming

- **Linear Programming**
 - Assumptions:
 - \(m \) rolling stock units \(M_j \) (\(j=1,\ldots,m \)) – \(\text{RUL}_j \)
 - \(P \) missions \(T_p \) per day (\(p=1,\ldots,P \)) – \(\delta_p = \delta \)
 - 1 maintenance op. for each rolling stock unit – duration: \(\Delta T \)
 - maintenance capacity: \(c \) operations per \(\Delta T \)
 - horizon \(H = K\Delta T \) (\(k=1,\ldots,K \))
 - Decision variables:
 \[x_{j,k} = 1 \text{ if the RS unit } M_j \text{ performs a mission during Day } k \]
 \[y_{j,k} = 1 \text{ if the RS unit } M_j \text{ is maintained on Day } k \]
Resolution based on Linear Programming: constraints

- **Linear Programming**
 - assignment of rolling stock to the P missions
 - Compliance with RUL values (modeled as deterministic)
 - no assignment during maintenance
 - maintenance capacity constraint
 - only one maintenance op. per rolling stock unit

\[
\sum_{j=1}^{m} x_{j,k} = P \quad \forall 1 \leq k \leq K
\]

\[
\sum_{k=1}^{K} \delta \cdot x_{j,k} (1 - y_{j,k}) \leq RUL_j \quad \forall 1 \leq j \leq m
\]

\[
y_{j,k} - y_{j,k-1} \leq 1 - x_{j,k} \quad \forall 1 \leq j \leq m, \forall 1 \leq k \leq K
\]

\[
\sum_{i=1}^{m} (y_{j,k} - y_{j,k-1}) \leq c \quad \forall 1 \leq k \leq K
\]

\[
\sum_{k=1}^{K} (y_{j,k} - y_{j,k-1}) \leq 1 \quad \forall 1 \leq k \leq K
\]
Resolution based on Linear Programming – use case

Assumptions:

- \(m = 4 \) tramways, \(n = 1 \) sub-system per tramway for predictive maintenance
- \(P = 3 \) missions per day \(k \)
- \(H = 20 \) days (\(K = 20 \))
- \(c = 1 \) maintenance operation per day

Output Schedule

\(M_1, M_2, M_3, M_4 \)

\(M_1: \) RUL\(_1(0) = 27\)
\(M_2: \) RUL\(_2(0) = 6\)
\(RUL_2(M) = 2\)
\(M_3: \) RUL\(_3(0) = 11\)
\(RUL_3(M) = 3\)
\(M_4: \) RUL\(_4(0) = 0\)
\(RUL_4(M) = 0\)
Linear Programming (LP): various objective functions

- Objective 1: maximize degradation level before maintenance
- Objective 2: minimize the number of maintenance operations over the scheduling horizon.
- Objective 3: maximize service provided, i.e. number of missions.

→ Each leads to different decisions.

LP: a sound approach but quickly breaks downs when number of systems or time horizon increases…. The “curse of dimensionality”.
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways
- Problem Formulation: dynamic Resource allocation
- Problem Resolution 1: a linear Programming Model
- Problem Resolution 2: a multi-agent System
- Some preliminary Results
- Future Developments
Multi-Agent System Approach

- Multi-Agent Systems (MAS): approximate solutions to very complex problems by distributing them to agents, which can be seen as autonomous problem solvers (but need to coordinate)

- Well suited to the functionally and geographically distributed characteristics of a rail transport system.

- Who are the agents?
 - A Maintenance Agent: elaborates maintenance plans
 - An Operations Agent: assigns assets to missions
 - Resource Agents: provide resources (rolling stock, maintenance facilities)
 - System Agents: manage the state of health of each asset

- Agents’ “conflicting” goals:
 - Operations: fulfil missions
 - Maintenance: keep assets healthy
 - They need to ‘negotiate’.
Interactions between Agents

Systems
- m systems

Operations
- choice of systems to send in revenue service each day
- set of rides
- associated expected degradation rates

Resources
- human resources
- tools
- Tracks

Maintenance
- choice of systems to send in maintenance each day
- maintenance dates
- maintenance operations (type, grouping, …)

Schedule

System Availability
Agents’ Data

Systems
- Number of systems
- Sub-systems that require Predictive maintenance
- RULs of sub-systems after maintenance
- Sub-systems that require Systematic maintenance
- Periodicity of each systematic maintenance
- Cost of lost Km for each sub-system

Operations
- Number of missions per day
- Length of missions
- Degradation rate of missions
- Cost of lost mission
- Planning horizon
- choice of systems to send in revenue service each day
- set of rides
- associated expected degradation rates

Maintenance
- Number of resources
- Availability of resources
- choice of systems to send in maintenance each day
- maintenance dates
- maintenance operations (type, grouping, …)

- human resources
- tools
- Tracks
- Needed time for maint tasks
- Needed resources (Number + Time) for maint tasks
- Cost of each maint task
Some Preliminary Results

- **Linear Programming Model**

Figure 7: Maximum number of maintenance operations per day for the three objective functions and maintenance capacities $c = 1, 2, 3, 4$ and $5 - m = 18$ systems, $P = 15$ missions.
Evaluation Metrics (KPIs)

KPI1: Number of lost (non-performed) missions.
 → key for Operations

KPI2: Number of maintenance operations per day.
 → Maintenance capacity requirements

KPI3: Number of maintenance operations/component over planning horizon → LCC.

KPI4: ‘Lost km per maintenance action’: kms that still could have been performed given the state of health.

KPI5: Resource Load Ratio: % of time during which a resource is effectively utilized.

Various policies impact those metrics differently
Heuristic Policies

S1: assign most degraded train to easiest mission → keep best systems available

S2: assign easiest mission to most degraded system that can perform it → postpone next maintenance of each system

S3: -- in a first step, S1
 -- in a second step, Operations and Maintenance agents communicate to minimize number of lost missions

S4: Distribution maintenance operations over time

S5: choose systems to be maintained so as to maximize maintenance resource use

S6: use S4 for mission assignment and S5 for maintenance assignment
Resolution approach based on Multi-Agent Model

Heuristic Decision Making

6 Strategies (S1, S2,….. S6)
Presentation outline

- Introduction: Asset monitoring and Fleet Challenges in Railways
- Problem Formulation: dynamic Resource allocation
- Problem Resolution 1: a linear Programming Model
- Problem Resolution 2: a multi-agent System
- Some preliminary Results
- Future Developments
Some Future Developments

- More-general types of networks (Main Lines–several depots)
- Model RULs as random variables
- Model more explicitly the “negotiation process” between Operations and Maintenance agents
- Encapsulate some linear-programming algorithms inside the agents
- Formalize operating costs to evaluate cost of lost missions
- Rigorous derivation of system (train)-level health attributes from subsystem ones
Acknowledgement

- The author gratefully acknowledges the contribution of Alstom colleague H.Bury, as well as those of Prof. Varnier, Nicod and Zerhouni, and Ms. Herr and Mr. Omri, from Besançon University (FEMTO Lab), France.
Bibliography

