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Multi-Body Dynamical Systems: 
Integral to Industrial Applications
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Suspension Systems

Roller Bearings

Tire-road Contact

Planetary Gears



3

Motivation : Need for Dynamical Models

Re-manufacturing 
Limit

time

B
ea

ri
n

g
 r

is
k 

o
f 

fa
ilu

re

Incipient Fault

Failure

Early Diagnostics & Long 

Range Prognostics

Stress Intensity 

Factor at Crack Tip

Contact 

Stresses

Contact 

Loads

Roller

Outer ring

Hertzian Contact Stress

Internal Loads that can not be measured !



4

Motivation : Need for Dynamical Models

Re-manufacturing 
Limit

time

B
ea

ri
n

g
 r

is
k 

o
f 

fa
ilu

re

Incipient Fault

Failure

Early Diagnostics & Long 

Range Prognostics

Stress Intensity 

Factor at Crack Tip

Contact 

Stresses

Contact 

Loads

Roller

Outer ring

Hertzian Contact Stress

Internal Loads that can not be measured !

Dynamical Models Transform the 
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Attributes of an Ideal Dynamics Model 
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Noisy input 

data

Learning from

trajectory without

parameters as input

INPUT DATA

Generalization to 

unseen operating 

conditions

Extrapolation to 

Unseen

Configurations

GENERALIZATION

Interpretable &

Explainable

dynamics

Long trajectory

roll-out & 

stable error

accumulation

On-line Dynamics 

Prediction as a 

function of Changing

Operating Conditions.

OUTPUT



Traditional Approaches to Model Dynamics
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Lumped Parameter 

Models
FEA/Multiphysics 

Simulations

Data Driven Methods

Feed Forward Neural 

Networks, PINNS

Li & Lee (2005). 

Gear fatigue crack prognosis using embedded 

model, gear dynamic model and fracture 

mechanics. Mechanical systems and signal 

processing

Kacprzynski, et. al. (2002). 

Enhancement of physics-of-failure 

prognostic models with system level 

features. 

IEEE aerospace conference

Combination of Paris law along 

with a simplified two-dimensional 

(2D) FEA for estimating stress-

intensity-factor RUL estimation 

of Helicopter Gears

Developed a dynamic model of a gear 

transmission to estimate the internal 

loads from measurements for RUL 

prediction using Paris Law

Pavlenko, et.al. (2019). 

Application of artificial neural network for 

identification of bearing stiffness 

characteristics in rotor dynamics analysis.

International Conference on Design, 

Simulation, Manufacturing, 2018

ANN trained on FEA model 

data to predict bearing stiffness 

as a function of rotor speed.



Traditional Approaches to Model Dynamics
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• Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 2022

• Thelen, A., Zhang, X., Fink, O., Lu, Y., Ghosh, S., Youn, B.D., Todd, M.D., Mahadevan, S., Hu, C. and Hu, Z., 2022. A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies. 

Structural and Multidisciplinary Optimization, 2022
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10Recent Progress: 
Graph Neural Network Based Approaches for Learning Dynamics

• Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI open 1, 2020

• Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International conference on machine learning. PMLR, 2020.

Spring-Mass Systems Motion Dynamics Molecular Dynamics Particle Dynamics

GNNs excel at modelling systems driven by pair-wise interactions

GNNs Incorporate Spatial Inductive Bias : 

Spatial Connectivity Between Different 

Components is explicitly modelled



Recent Progress: 
E.g.
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Graph neural networks for dynamic modeling of roller bearings
Sharma, V., Ravesloot, J., Taal, C., & Fink, O. , Annual Conference of the PHM Society, 2023

Single-step prediction

Inspired by Lumped Parameter Models Graph Representations of 

Multi-Body Industrial Systems are straightforward.
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GNN based Dynamics Model:
Details of Data-Driven Interaction Learning

State of the art method: 

Graph Neural Simulator, 
Learning to simulate complex physics with graph networks." Sanchez-Gonzalez, et.al., ICML 2020

How GNNs Model Dynamics? : Example of a Spring-Mass dynamical System:

Node Feature:
Dynamics Features : Position, Velocity

Scalar Features : Type of Node / Fixed-Non Fixed

Edge Feature:
Dynamics Features : Relative distance between Nodes

Scalar Feature : Type of Edge (e.g. Damper/Spring)
Decode:

Node Representations are 

decoded as Node 

accelerations

Encode:

Transform Features to N 

dimensional Numerical 

Representation

Process:

Transform Node and Edge 

Representations by Adding 

neighbouring node representation.

The Dynamical System is Represented as a Graph where:

• Each Node represent the mass

• Each Edge represent the spring
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GNN based Dynamics Model:
Details of Data-Driven Interaction Learning

Train : Train : 4, 5, 6, 7, 9, 10 masses

Test : 12 masses (Extrapolation)

Assessing Model Performance in Generalization



14

GNN based Dynamics Model:
Details of Data-Driven Interaction Learning

Assessing Model Performance in Generalization

Graph Neural Simulator

Physics Simulation

Research Gap
Purely Data Driven GNNs 
1) Prone to Error-Accumulation For Long Rollouts
2) Unsatisfactory Generalization



Proposed Method: PI-GNN
1) Novel Architecture with Symmetry Preservation, Momentum & Angular Momentum Conservation
2) Reinterpretation of Message Passing as Euler integration of Forward Newton Dynamics
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Rotation Equivariance : Translation Invariance: 

Dynamical Vectors (Forces, Moments, 

Velocities etc. are Rotational Equivariant & 

Translational Invariant)

Symmetry in Dynamical Systems:

Conservation of Linear & Angular Momentum:

For 2 interacting Bodies with internal forces

• Linear momentum is conserved

• Total angular momentum is conserved

• Conservation of linear momentum implies equal and 

opposite interaction forces between two bodies. 

• Conservation of angular momentum implies equal 

and opposite total torques on each body.

Conservation Laws in Dynamical Systems:

These biases are general and therefore are applicable to broad range of systems, 

PINNs on the other hand require system specific PDE knowledge  



Proposed Method: PI-GNN
1) Novel Architecture with Symmetry Preservation, Momentum & Angular Momentum Conservation
2) Reinterpretation of Message Passing as Euler integration of Forward Newton Dynamics
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Single Message Passing Layer of PI-GNN:

3D Local Reference 

Frame Defined for Each 

Edge

Symmetry Bias

Encode Vectors & Scalar 

Features Separately.

• Project Vectors on Local 

Reference Frame to get 

New Scalars.

Symmetry Bias

Decode Internal Dyn. Vectors:

(Internal Forces & Moments)

• Decode such that conservation of 

Linear & Ang. Momentum is 

guaranteed

Conservation Bias

Update Node State:

• Single Step Forward Newton 

Dynamics
Forward Dynamics 

Bias



Generalization : Larger Systems
GNS v/s PI-GNN (proposed)
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Baseline

Physics

Simulation

12 masses

(+2)

12 masses

(+2)

PI-GNN

Physics

Simulation

Baseline PI-GNN

Train : 1000 time-step trajectories of 4, 5, 6, 7, 9, 10 masses
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Generalization : New Boundary conditions

PI-GNN

Physics

Simulation

10 masses
&

3 nodes fixed

Train : 1000 time-step trajectories of 4, 5, 6, 7, 9, 10 masses



8 masses

Transition to Chaotic 

Spring-Coupled Double 

Pendulum 
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Generalization : New Boundary conditions

PI-GNN

Physics

Simulation

Train : 1000 time-step trajectories of 4, 5, 6, 7, 9, 10 masses



Application to 6 DOF Collision Dynamics
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TRAINING DATA:

4 cases with different initial velocity of spheres with 6 DOF colliding with

• with rough walls of a box (coeff. of friction : 0.1), coeff of restitution : 0.9

• with other spheres (coeff. of friction : 0.1), coeff of restitution : 0.9

SIMULATED TRAJECTORIES 

WITH MFix DEM SOLVER



Application to 6 DOF Collision Dynamics
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GNS

(Baseline) 

TRAINING DATA:

4 cases with different initial velocity of spheres with 6 DOF colliding with

• with rough walls of a box (coeff. of friction : 0.1), coeff of restitution : 0.9

• with other spheres (coeff. of friction : 0.1), coeff of restitution : 0.9

GENERALIZATION : 3x Initial Velocity

GROUND TRUTH
(DEM SIM.)

PIGNN

(Ours)



Linear & Angular Momentum Conservation
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Experiment : A closed system of two particles undergoing inelastic collision 

(training data: 4 cases of box collisions same as before)

PIGNNGROUND TRUTH
(DEM SIM.)



Linear & Angular Momentum Conservation
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GNS (16 layer, 5 time step history) PIGNN (1 layer, 1 time step history)
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▪ 2D dynamic lumped bearing model, 
(based on P. K. Gupta, 1979)

▪ Differential equations of motion

▪ Lundberg & Palmgren model for 
Hertzian contact

▪ N209 CRB bearing (line contacts)

Graph

PI GNN

Trajectory data

Application to Industrial Multi-Body Systems
2D dynamic model of Rolling Element Bearing
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Ground Truth Prediction

(N)(N)

Untrained Bearing Configuration

RPM: Outside Training Data

Load: Outside Training Data

TRAININIG DATA : 
BEARINGS : 13, 14 and 16 Rolling Elements Configurations

RPM : 300, 333, 428, 500, 600, 1000, 1499

LOADS: 5000, 7000, 9000, 11000, 13000, 15000, 17000

Unloaded Rollers: 

Negligible Loads

Application to Industrial Multi-Body Systems
Data: 2D dynamic model of Rolling Element Bearing

Relative Deformation 

of Rollers

Contour of Predicted 

Loaded Zone

Colour Bar: Accurate 

Prediction of Individual 

Roller Loads



Graph

26Application to Industrial Multi-Body Systems
Data: Mesh based FEA + CFD Simulation of Lubricated Bearing

FEA SIMULATION

• Damping due to lubricant

• Contact stresses on the rollers

• 3-D structural forces on the rollers 

and raceways.

PI GNN

Trajectory data
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Untrained Bearing Configuration

Load: Outside Training Data

TRAININIG DATA : 
BEARINGS : 13, 14 and 16 Rolling Elements Configurations

RPM : 300, 333, 428, 500, 600, 1000, 1499

LOADS: 5000, 7000, 9000, 11000, 13000, 15000, 17000 RPM: Outside Training Data

Meshless

Fast Inference

Long stable Rollout

(N) (N)

Application to Industrial Multi-Body Systems
Data: Mesh based FEA + CFD Simulation of Lubricated Bearing



Conclusions:
29

PIGNN

• Applicable to broad range of dynamical systems

• Conservation of Momentum & Symmetry Preservation

• Long Stable Dynamics Rollouts

Next Steps : 

Online Surrogate Model 

trained on Lumped 

Parameter Models

Online Surrogate 

Model trained on 

FEA data

Online Dynamics 

from Measured 

Data

RUL prediction 

Based on 

Predicted Loads
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THANK YOU


