Predictive maintenance for heavy duty vehicles

Sepideh Pashami, Associate Professor, Halmstad University Senior Researcher, RISE Research Institutes of Sweden sepideh.pashami@{hh.se, ri.se}

Predictive maintenance

Identifying imminent failures and intervening sufficiently early to prevent them from happening.

Success stories

An airplane generates over 20TB of data per flight!

Critical & expensive equipment

e.g., nuclear power plants & aircrafts

the trick is lots of high-quality data

Simple equipment (physics-based)

e.g., wheel bearings with vibrations sensors

the trick is well-understood failures

Complexity spectrum

Two main challenges

- Make predictions from low-quality data
 - o tangential to the relevant processes
 - low measurement accuracy & frequency

- o external conditions & usage
- mixed with fault symptoms

Goal: Self-Aware Systems

- Build models describing reality
 - o from available data
- Which ones are "interesting"?
 - based on unsupervised heuristics

- Discern abnormal from unusual
 - the real world is full of changes

- Open-ended PdM for vehicles
 - not limited to anticipated faults
 - resilient to context changes

- Not knowing what can go wrong
 - FMEA analysis showed only a
 23% overlap between anticipated
 and really encountered faults

COSMO: Consensus Self-organizing Models

A system that understands its own operation

- jammed cylinder
- runaway engine fan
- weak air compressor

Goal: Production-Ready PdM System

- 000
- Problem formulation
 - RUL regression vs binary classification

- Evaluation criteria
 - beyond accuracy & f-score
 - estimate financial gains

- A ready-to-deploy system
 - o limited number of components
 - o automated decision making
- Work within current limitations
 - low quality & frequency of data
 - o unreliable & noisy label

Automate Today's Decisions

Estimating and predicting the State of Health (SOH) for batteries for hybrid buses

Metric	All (3212 Buses)	Monotonic-decreasing Function (2049 Buses)
MAE	2.60	1.04
R ²	0.81	0.98
Correlation	0.90	0.99

Goal: Real-World Generalisations

- Find sets of invariant features
 - those invariant across all source domains are likely to remain invariant also in unseen targets

- Estimate battery State of Health
 - o different ML models
 - o for different vehicles

- Simple and easy to understand
 - many TL methods are too complex

Genetic Algorithm

	Single-decker	Double-decker	Articulated
GA*	2.05 ± 0.00	1.53 ± 0.01	1.48 ± 0.01
GADIF	2.27 ± 0.03	1.53 ± 0.01	1.67 ± 0.03
Pearson	2.16 ± 0.12	1.54 ± 0.03	2.08 ± 0.16
RF	2.19 ± 0.14	1.54 ± 0.03	1.78 ± 0.10
LR	2.29 ± 0.09	1.67 ± 0.01	2.07 ± 0.41
SFS	2.19 ± 0.12	1.60 ± 0.03	2.10 ± 0.15
XGB	2.16 ± 0.12	1.57 ± 0.02	2.08 ± 0.16
All Features	2.19 ± 0.21	1.68 ± 0.05	2.07 ± 0.18

	Slow	Moderate	Fast
GA*	1.50 ± 0.01	1.59 ± 0.01	1.88 ± 0.01
GADIF	1.54 ± 0.02	1.65 ± 0.01	1.96 ± 0.02
Pearson	1.54 ± 0.06	1.74 ± 0.05	2.02 ± 0.01
RF	1.62 ± 0.07	1.72 ± 0.07	1.99 ± 0.04
LR	1.75 ± 0.06	1.81 ± 0.07	2.12 ± 0.02
SFS	1.54 ± 0.07	1.73 ± 0.07	2.03 ± 0.09
XGB	1.54 ± 0.07	1.74 ± 0.05	1.99 ± 0.11
All Features	1.53 ± 0.07	1.72 ± 0.09	2.06 ± 0.14

Battery Generation:

Non-invariant, MAE 19%

Invariant, MAE 5%

Goal: Domain Adaptation Regression

- Concept shift for regression
 - Pairwise Similarity Preserver loss
- Two-domain setting
 - o source with sufficient data size
- Multi-domain setting
 - several equivalent domains
 - neither contains sufficient data

- Predict battery State of Health
 - o a single model is not very good

- Country-specific seems to work
 - o but some countries lack data

Pairwise Similarity Preserver

Domain Adaptation for Regression

Real-World Data

Goal: Explaining Survival Patterns

- Survival analysis is promising
 - o able to exploit censored data

- Outputs are functions
 - typically, survival curves
 - XAI assumes point predictions

- Figure out battery replacements
 - o in hybrid buses
- Characterise the differences
 - o affecting the survival rate

- Provide actionable insights
 - describe diverse sub-groups

Diverse Survival Patterns

Explaining Survival Patterns (SurvSHAP)

Counterfactual Explanation of Survival Patterns

Particle Swarm Optimization (PSO) algorithm to optimize the following objectives:

- Achieve the desired change in the target output
- Minimal change to the input
- Plausibility of the counterfactual example
- Actionability of the counterfactual example

Actionability of Counterfactual Explanations

- Flchain dataset
- RSF
- Survival pattern
- Pattern 2 to 9
- When Age is masked or not

Predictive Maintenance

Dream Solution: When a system can explain

Almost Perfect Solution: Wisdom of the Crowd

Today's Practical Solution: Supervised Learning

Generalizable Solution: Domain Adaptation

Understandable Solution: Explainability methods

