

GRAPH MACHINE LEARNING FOR SHORT-TERM SOLAR FORECASTING

WHY IS SOLAR FORECASTING IMPORTANT?

Unerwartete Stromlücke

Fehlende Leistung am 22. April 2024, Viertelstunden-Werte, in Megawatt

Quelle: <u>Swissgrid</u> Daten herunterladen NZZ / cei.

SOLAR FORECASTING

- Up to 3 days ahead: numerical weather predictions (NWP) + statiscal (or ML) model
 - Day ahead markets, unit commitment, transmission scheduling
- Up to 6h ahead: satellite-derived cloud motion tracking + numerical model
 - Load forecasting, trading
- Up to 30 min. ahead: all sky imagers with cloud motion tracking
 - Ramping events

NWP data from the Weather Research and Forecasting (WRF-NWP 3.6.1) mesoscale model by NCAR

SHORT-TERM SOLAR FORECASTING

Cloud motion prediction

- State of the art: Numerical weather models + satellite images
- Limitations: limited resolution and high computational cost
- What if we use other data sources?
 - Track cloud motion by looking at different ground systems in time
 - Dense network of sensors?

©EUMETSAT [2022], https://www.eumetsat.int/

MODELING COMPLEX DYNAMICS WITH GRAPHS

- Times series data from:
 - PV systems
 - Meteorological stations
- Graph neural networks model spatiotemporal relations
- Potential for improved temporal and spatial resolution
- In Switzerland
 - ~200 meteorological stations
 - ~200.000 connected PV systems

CHALLENGE: DYNAMIC CHANGES IN THE NODE SET

FORECASTING PROBLEM

DIGERATI

- Short term probabilistic forecast solution
- Six hours ahead horizon with temporal resolution of 15 minutes

R. Carrillo et al., "Dynamic Graph Machine Learning for Multi-Site Solar Forecasting," in Proc. EUPVSEC, 2023, doi: 10.4229/EUPVSEC2023/4CO.8.5

FORECAST MODEL: TEMPORAL SPATIAL MULTIWINDOW GRAPH ATTENTION NETWORK

Encoder

- Temporal attention to capture time dependencies
- Spatial attention block to capture dynamically changing spatial correlations between nodes
- Multi-window mechanism: different spatial attention for different forecasting horizon windows
 - (0-2h)
 - (2-4h)
 - (4-6h)

Decoder

MLP and multi-quantile heads

J. Simeunović et al., "Interpretable Temporal-Spatial Graph Attention Network for Multi-Site PV Power Forecasting," in Applied Energy, 2022, doi: 10.1016/j.apenergy.2022.120127

Future Irradiance (power), 6 hours ahead

Clear-sky irradiance

Past features, 6 hours

PROBABILISTIC FORECASTS

- Quantile regression approach
- DIGERATI produces forecasts for:
 - Median value
 - Upper bound (95% quant.)
 - Lower bound (5% quant.)
- System can be adapted:
 - Less conservative confidence intervals (e.g., for economic optimization)
 - More points of the distribution,
 e.g., 5%, 25%, 50%, 75%,
 95%

QUANTITATIVE EVALUATION

- Prediction interval coverage probability (PICP) used as metric
- More than 90% probability for the entire forecasting horizon

- Normalized continuous rank probability score (CRPS) evaluated on one year of historical data
- Forecasted quantiles follow the empirical distribution of the data
- CRPS smaller than 6% for the entire horizon

11 Graph ML for short-term solar forecasting

BENCHMARK

- Comparison with a SoA commercial solution based on satellite images and cloud propagation
 - 18 locations in Switzerland
 - 21 days over different weather conditions
- 25% reduction of forecasting error
- Acceleration on the computations of forecasts by a factor 100

DIGERATI: SHORT TERM FORECASTING SOLUTION

- Live demo yields forecasts for a horizon of six hours ahead with a temporal resolution of 15 minutes
- API available to get forecasts in real time
- Do you want to try it?
 - Go to: https://digerati.portal.csem.ch/

PHYSICS INFORMED GNN (PING): PRELIMINARY RESULTS

CONCLUSIONS

- DIGERATI produces probabilistic forecasts of solar irradiance (or power) for up to 6 hours ahead with a resolution of 15 minutes
- It uses a network of distributed sensors (PV systems and weather stations) as inputs
- It uses GNN to learn spatio-temporal relations of multisource data
- Solution robust to changing conditions on the input's node set thanks to dynamic graph machine learning
- Outlook: inclusion of heterogeneous data sources (e.g. satellite images or NWP) to increase spatial context and prediction horizon

15 Graph ML for short-term solar forecasting

Rafael Carrillo Expert, Digital Energy Solutions rafael.carrillo@csem.ch +41 32 720 5389

