

 École polytechnique fédérale de lausanne

Generative Modeling

- Goal of generative modeling
 - Learning the underlying distribution of data

Output~ $P_{model}(x)$

Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.

Crafting the Unknown with Generative Modeling

Debiasing

Parraga, Otávio, et al. "Debiasing methods for fairer neural models in vision and language research: A survey." arXiv preprint arXiv:2211.05617 (2022).

Crafting the Unknown with Generative Modeling

How does generative modeling work?

Autoencoder (AE)

Generative Adversarial Networks (GAN)

https://vitalflux.com/gan-vs-vae-differences-similarities-examples/

How does generative modeling work?

How does generative modeling work?

Diffusion Models

Latent space Conditioning Forward diffusion Zo Semantic map Z, Text prompt **Images** pred noise U-Net pred noise

Diffusion models

Stable Diffusion

- Trained on billion-scale datasets
- Realistic synthetic images

Why anomaly generation?

- We might not know how the anomalies look like...
 - High cost to obtain labeled data
 - Rare faulty collection
 - Limited representativeness

Why anomaly generation?

- We might not know how the anomalies look like...
 - High cost to obtain labeled data
 - Rare faulty collection
 - Limited representativeness

Why anomaly generation?

- HOWEVER, we might neither know how the normal samples look like...
 - Variations of products
 - Different industrial configurations
 - Newly established production line

Let's generate more anomalous samples!

Anomaly Generation

Traditional methods

Generative Modeling

Requirements for Anomay Generation

- Limited normal samples
- No anomalous samples
- Anomaly description
- Applicable to wide range of scenarios

Stable Diffusion

- Trained on billion-scale datasets
- Realistic synthetic images

How about generating the anomalies?

Our proposed methodology: CUT

- A Controllable, Universal, and Training-Free Visual Anomaly Generation Framework
 - Controlled by sample image and text description
 - Applicable to any objects and anomaly types
 - No model training is required

A hazelnut/metal nut

Desired results

Generated results

Conditioning via one-shot normal sample

A hazelnut/metal nut that is damaged

Anomaly is a hard concept for diffusion models!

Generated results

Mask guided attention optimization

Mask guided attention optimization

Generation with desired object and anomaly type

Which one is real

(i) Start presenting to display the poll results on this slide.

Generation with desired object and anomaly type

Generation with desired object and anomaly type

In comparison with other anomaly generation methods

Experimental results on anomaly detection

Speaker

Outlooks

New product

Expert knowledge

Potential Faults

Automatic Detection

 École polytechnique fédérale de Lausanne

CUT: Stable Diffusion for anomaly generation

Good generation capability

- Controllable
- Universal
- Realistic

Little training effort

- No model training
- No anomalies required
- No manual labeling

Text Prompts

"A photo of a [cls] that is damaged"

