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=PFL  Generative Modeling 2

= Goal of generative modeling

« Learning the underlying distribution of data

A Generated Real
Distribution / Distribution

Input ~ Pyt (x) OUtpUt~Pmodel(x)

L Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
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Crafting the Unknown with Generative Modeling

= Debiasing

Unbalanced Dataset Balanced Dataset

Parraga, Otavio, et al. "Debiasing methods for fairer neural models in vision and language research: A survey." arXiv preprint arXiv:2211.05617 (2022).



=PFL  Crafting the Unknown with Generative Modeling ‘
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=PFL  How does generative modeling work?

generator

fake

discriminator
real

encoder decoder

Autoencoder (AE) Generative Adversarial Networks (GAN)

real images

https://vitalflux.com/gan-vs-vae-differences-similarities-examples/



https://www.youtube.com/watch?v=H45IF4sUgiE&list=PL8VDJoEXIjpo2S7X-1YKZnbHyLGYESDCe




Denoising Probabilistic
Diffusion Model

Noisy Image Less Noisy
Image

https://www.youtube.com/watch?v=H45IF4sUgiE&list=PL8VDJoEXIjpo2S7X-1YKZnbHyLGYESDCe
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=PFL  Stable Diffusion ¢

= Trained on billion-scale datasets

= Realistic synthetic images
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Why anomaly generation?

= We might not know how the anomalies look like...
* High cost to obtain labeled data
« Rare faulty collection

* Limited representativeness

https://www.mvtec.com/company/research/datasets/mvtec-ad
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=PrL

Why anomaly generation?

= We might not know how the anomalies look like...
* High cost to obtain labeled data
« Rare faulty collection

* Limited representativeness

We can learn the distribution of normal samples
without any anomalies
p— :
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Why anomaly generation?

= HOWEVER, we might neither know how the normal samples look like...
« Variations of products
 Different industrial configurations

* Newly established production line

Let’s generate more anomalous samples!
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=PFL  Anomaly Generation

Natural -

: - Anomalous
Patterns -

Samples

Stable
Diffusion ’ .
Universal/Unrealistic Specific/Realistic
Training-Free Training Required

Traditional methods Generative Modeling



=PrL

Requirements for Anomay Generation

= Limited normal samples
= No anomalous samples
= Anomaly description

= Applicable to wide range of scenarios

A damaged metal nut

Conditioning

Semantic map

Text prompt

Images

il
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=PFL  Stable Diffusion i

= Trained on billion-scale datasets

= Realistic synthetic images

How about generating the anomalies?




=PFL  Qur proposed methodology: CUT

= A Controllable, Universal, and Training-Free Visual Anomaly
Generation Framework

» Controlled by sample image and text description
» Applicable to any objects and anomaly types

* No model training is required

“A phone l
that is damaged”

T9(C) )

CUT




=PFL A hazelnut/metal nut "

“A metalnut” l l l

7o(C) KV KV KV

Denoising UNet

Generated results



=PFL  Conditioning via one-shot normal sample
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=PFL A hazelnut/metal nut that is damaged "

Anomaly is a hard concept for diffusion models!

“A metalnut l l l

that is damaged”
Q Q Q

—
7o(C) KV KV KV

Denoising UNet

Generated results



=PFL Mask guided attention optimization i
I ] l j at x? I i ]
“A bottle that is o | ‘

damaged ” 0 0 0 1 % N ’ -
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=PFL  Generation with desired object and anomaly type i

(@) Normal image (b) Stable Diffusion (c) w/o image (d) w/o attention (e) ours
and mask guidance optimization



WELCOME TO EPFL

Which one iIs real

(® Start presenting to display the poll results on this slide.
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Generation with desired object and anomaly type
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=PrL

Generation with desired object and anomaly type

v
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Broken Screen

Cracked Screen
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In comparison with other anomaly generation methods

Reference DRAEM NSA RealNet Anomaly
Diffusion



=PrL

Experimental results on anomaly detection
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CUT: Stable Diffusion for anomaly generation

= Good generation capability Text Prompts
« Controllable “A photo of a [cls] that is damaged”
* Universal *
» Realistic
: . Stable
= Little training effort Diffusion
* No model training *
* No anomalies required
Universal/Realistic

* No manual labeling Training-Free
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