eXplainable Artificial
Intelligence (XAI) in Industrial
Diagnostic: Interpretable

Unsupervised Anomaly

Detection

Gian Antonio Susto

Associate Professor, Università degli Studi di Padova, Italy

September 3rd, 2024 @ Lausanne – 8th Intelligent Maintenance Conference

The speaker

- Associate Professor of Machine Learning (ML) & Control @ Università degli Studi di Padova, Italy
- Leading the Artificial intelligence,
 Machine learning & Control (AMCO)
 research group. What we do:
 Explainable Artificial Intelligence,
 Reinforcement Learning, Unsupervised
 Learning, Industrial Applications,
 Fairness, Active Learning...
- Co-founder @ Statwolf: software company developing industrial Machine Learning-based solutions

Goals

Goals:

- More efficient process monitoring
- More accurate process control
- Reduced downtime
- Improved maintenance/service operations
- Improved quality/reduced scrap products
- Faster/more accurate detection of defects

• ...

Challenges

Challenges:

- Data availability: ie. Lack of tagged/sufficient/consistent data;
- 2. The 'human-in-the-loop factor': ie. Lack of trust in ML solutions, difficulties in translating ML suggestions into actions and business impact;
- 3. Lack of ML-ready architectures: ie. no interoperability of systems, no tool to properly monitor and improve ML solutions (MLOps);
- 4. No off-the-shelf solutions: while some tasks can be considered 'solved', others required customized approaches;
- 5. Scalability: ie. Is it worth to develop a ML solution if I cannot easily scale it to several machines/production sites/customers?
- 6. ...

Challenges

The rest of this talk!

Challenges:

- Data availability: ie. Lack of tagged/sufficient/consistent data;
- 2. The 'human-in-the-loop factor': ie. Lack of trust in ML solutions, difficulties in translating ML suggestions into actions and business impact;
- 3. Lack of ML-ready architectures: ie. no interoperability of systems, no tool to properly monitor and improve ML solutions (MLOps);
- 4. No off-the-shelf solutions: while some tasks can be considered 'solved', others required customized approaches;
- 5. Scalability: ie. Is it worth to develop a ML solution if I cannot easily scale it to several machines/production sites/customers?
- 6. ...

Anomaly/Outlier Detection

What is an anomaly/outlier?

'An outlier is an observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism' [1]

We want to detect anomalies for monitoring/quality purposes and trigger maintenance/corrective actions

[1] D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980

- One technique to rule them all...
- Univariate control charts (CC) are the standard approach to deal with process monitoring

- One technique to rule them all...
- Univariate control charts (CC) are the standard approach to deal with process monitoring
- Univariate CC Limitations:
- They are unable to capture multivariate anomalies

- One technique to rule them all...
- Univariate control charts (CC) are the standard approach to deal with process monitoring
- Univariate CC Limitations:
- They are unable to capture multivariate anomalies

- One technique to rule them all...
- Univariate control charts (CC) are the standard approach to deal with process monitoring
- Univariate CC Limitations:
- They are unable to capture multivariate anomalies
- 2. They rely on Gaussian/unimodal distribution of underlying data

Upper Control Limit

Real production data!

- One technique to rule them all...
- Univariate control charts (CC) are the standard approach to deal with process monitoring
- Univariate CC Limitations:
- They are unable to capture multivariate anomalies
- 2. They rely on Gaussian/unimodal distribution of underlying data
- 3. Too many to handle!

Multivariate Unsupervised Anomaly Detection

Multivariate Unsupervised AD approaches provide 'anomaly scores': unique quantitative indicators able to represent the degree of 'outlierness' of complex systems with many variables

- 1. No labelled data are required
- 2. Dozens/Hundreds of sensors variables can be considered at the same time
- 3. No need for gaussian/unimodal distributions

Multivariate Unsupervised Anomaly Detection

Many approaches for tabular data (data where rows are observations and columns are variables) [2]:

- Density-based methods (e.g. LOF, DBSCAN)
- Distance-based methods (e.g. kNN)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)
- Isolation Forest
- ...

[2] PyOD (Python library for detecting outlying objects)
https://pyod.readthedocs.io/en/latest/

- Efficient algorithm that outperforms other AD methods in several domains [4]
- Based on a partitioning procedure (that creates isolation trees) and on the idea that outlier and inlier are differently affected by such procedure

- Efficient algorithm that outperforms other AD methods in several domains [4]
- Based on a partitioning procedure (that creates isolation trees) and on the idea that outlier and inlier are differently affected by such procedure

[3] Liu et al. (2012). Isolation-based anomaly detection. *ACM Trans. on Knowledge Discovery from Data 6*(1), 1-39. [4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

- Efficient algorithm that outperforms other AD methods in several domains [4]
- Based on a partitioning procedure (that creates isolation trees) and on the idea that outlier and inlier are differently affected by such procedure

[3] Liu et al. (2012). Isolation-based anomaly detection. *ACM Trans. on Knowledge Discovery from Data 6*(1), 1-39. [4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

- Efficient algorithm that outperforms other AD methods in several domains [4]
 - Based on a partitioning procedure (that creates isolation trees) and on the idea that outlier and inlier are differently affected by such procedure
- An ensemble approach:

 anomaly score computed as mean of the depth over the various isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. *ACM Trans. on Knowledge Discovery from Data 6*(1), 1-39. [4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

Univariate Control Chart vs Unsupervised AD

To enable Decision Making information should be:

I've got the Anomaly Score: now, what?

- Thanks to the Anomaly score users are alerted of potential anomalous situation, however it is up to them to discover potential troubles
- It would be nice to ease the Root Cause Analysis to provide additional information, like feature rankings...

Depth-based Isolation Forest Feature Importance (DIFFI) [5]

DIFFI is an explainable Artificial Intelligente (XAI) approach designed for the Isolation Forest

DIFFI provides a variable ranking for:

- Global Explainability (ie. what variables are important for the whole Isolation Foreset model)
- Local Explainability (ie. what variables are important for a particular prediction)

Depth-based Isolation Forest Feature Importance (DIFFI) [5]

DIFFI provides a variable ranking that:

- Does not require true labels (other XAI approaches do!)
- Low computational cost
- No tuning

IDEA: mark a feature as "important" if

- it induces isolation of outliers at small depths (i.e. near the root)
- At the same time, does not contribute to the isolation of inliers

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depthbased feature importance of Isolation Forest. *Engineering Applications of Artificial Intelligence*, 119, 105730.

For technical details

AIMS5.0 (AI for Sustainable Manufacturing): case study in semiconductor manufacturing AIMS5.0

- EU Project on AI for Manufacturing
- 53 partners, 12 countries
- Main collaborations: LFoundry, Infineon, Statwolf, IDEKO

DIFFI (global) - Evaluation

EXPERIMENTAL RESULTS: Anomaly Detection for Chemical Vapor Deposition monitoring problems (102k observations, 25 features, 4 recipes) [6]

<u>Prior knowledge</u>: based on domain knowledge, the indices of the most important features (most of which has a physical interpretation) are 15, 16, 17, 18, 19, 20, 21, 22, 23.

[6] Carletti, M., Maggipinto, M., Beghi, A., Susto, G. A., Gentner, N., Yang, Y., & Kyek, A. Interpretable anomaly detection for knowledge discovery in semiconductor manufacturing. In Winter Simulation Conference (WSC) (pp. 1875-1885). IEEE.

DIFFI (global) - Evaluation

EXPERIMENTAL RESULTS: Anomaly Detection for Chemical Vapor Deposition monitoring problems (102k observations, 25 features, 4 recipes)

<u>Prior knowledge</u>: based on domain knowledge, the indices of the most important features (most of which has a physical interpretation) are 15, 16, 17, 18, 19, 20, 21, 22, 23.

DIFFI

Patrue importance importance o.... - 0.1.0 - 0.... - 0... - 0... - 0... - 0.... - 0

Permutation Importance (PIMP)

Table 1: Execution times comparison: DIFFI vs PIMP.

Dataset	Num samples	DIFFI exec time [s]	PIMP exec time [s]
Recipe 1	956	0.37	9.12
Recipe 2	34716	0.41	272.38
Recipe 3	3580	0.38	18.75
Recipe 4	13459	0.38	55.73

DIFFI (global) - Evaluation

EXPERIMENTAL RESULTS: Using as proxy task, unsupervised feature selection

We are comparing with Laplacian Score (He et al. 2006) and SPEC (Zhao et al. 2007) on a tagged dataset

Conclusive remarks

- Starting now with advanced diagnostic?
 Unsupervised anomaly detection is the perfect entry point!
- XAI approaches can be a fundamental tool for the adoption of AI solutions. Don't forget about the users!
- If you have unsupervised monitoring tasks when you need interpratibility (or you want fast interpretability) try DIFFI or let us know!
- Users will also need information in valuable time
- We developed approaches that can provide SHAP-like explanations in 'reasonable' time [7] to foster adoption of Al-based decision support systems

[7] Dandolo, D., Masiero, C., Carletti, M., Dalle Pezze, D., & Susto, G. A. (2023). AcME—Accelerated modelagnostic explanations: Fast whitening of the machine-learning black box. *Expert Systems with Applications*, *214*, 119115.

Thank you! Danke! Grazie!

eXplainable Artificial Intelligence (XAI) in Industrial Diagnostic: Interpretable Unsupervised Anomaly Detection

Gian Antonio Susto

Associate Professor, Università degli Studi di Padova, Italy

September 3rd, 2024 @ Lausanne – 8th Intelligent Maintenance Conference

Bonus Slides

DIFFI (global)

1) For each feature f, we compute a *Cumulative Feature Importance* for outliers $(I_0(f))$ and for inliers $(I_I(f))$.

We iterate over all trees of the forest and over all predicted outliers and inliers, respectively. Each time feature f appears in the path, update $I_0(f)$ or $I_I(f)$ according to the following update rules

For predicted outliers

$$I_0(f) \longleftarrow I_0(f) + \boxed{\frac{1}{d_{leaf}(i,t)}} \cdot \boxed{\lambda_0(v)}$$

Depth of the leaf node for *i-th* sample in t-*th* tree

Imbalance induced by the split

For predicted inliers

$$I_I(f) \longleftarrow I_I(f) + \frac{1}{d_{leaf}(i,t)} \cdot \lambda_I(v)$$

2) Compute the global feature importance score for the generic feature f:

$$GFI(f) = \frac{I_O(f)}{C_O(f)} / \frac{I_I(f)}{C_I(f)}$$

Counters: # of times feature f appeared in the paths of outliers or inliers

Local-DIFFI

Local variant of the global DIFFI method to produce local feature importance scores for predicted outliers

• Update rule:
$$I_O(f)$$
 $I_O(f) + \frac{1}{d_{leaf}(i,t)} - \frac{1}{d_{max}}$

where d_{max} is the maximum depth of the isolation trees

• Local feature importance score: $LFI(f) = \frac{I_O(f)}{C_O(f)}$

No imbalanced induced, no inlier/outlier (we are not training on this data point)

Local-DIFFI - Evaluation

EXPERIMENTAL RESULTS: glass dataset

Regular points: windows glass (classes 1-4 of the original dataset)

Anomalous points: headlamps glass (class 7 of the original dataset)

Feature "RI": refractive index

Features "Na", "Mg", "Al", "Si", "K", "Ca", "Ba", "Fe": sodium, magnesium, aluminum, silicon, potassium, calcium, barium, iron concentrations

<u>Prior knowledge</u>: headlamps glass should have high concentrations of <u>aluminum</u> (used as a reflective coating) and <u>barium</u> (heat resistant properties)

Local-DIFFI - Evaluation

