Explainable Artificial Intelligence Guided Unsupervised Fault Diagnostics for High-Voltage Circuit Breakers Chi-Ching Hsu¹, Gaetan Frusque², Florent Forest², Felipe Macedo³, Christian M. Franck¹, Olga Fink² ¹High Voltage Laboratory, ETH Zurich, Zurich, Switzerland ²Intelligent Maintenance and Operations Systems (IMOS), EPFL, Switzerland ³Hitachi Energy, Zurich, Switzerland 8th Intelligent Maintenance Conference September 3 – 4, 2024, Lausanne, Switzerland ## Introduction ### High voltage circuit breaker Mechanical switching device capable of conducting and breaking electric current under: - Normal electrical circuit operation - Abnormal electrical circuit condition, such as a short circuit. Maintenance for reliable operation ### Introduction ### High voltage circuit breaker maintenance **Time-based maintenance** is performed in a predefined time-interval, having as risks: - Unnecessary replacement of well-working components. - Components might be planned to be replaced / repaired when it is too late. Condition-based maintenance: determined based on HVCB condition assessment, having as benefits: - Increased availability, reliability and safety. - Reduced cost by proactive and optimized maintenance. ### Introduction ### Vibration monitoring - Vibration measurements cover all physical effects that contribute to the HVCB mechanical signal. - Installation of such monitoring system is simple and not invasive. - Challenges for vibration data analysis: - Short time duration (millisecond scale) - Wide frequency domain - Nonlinearity and non-stationarity Yang et al. (2019) CC: Coil current TC: Travel curve DRM: Dynamic resistance measurement Yang, Qiuyu, et al. "A new vibration analysis approach for detecting mechanical anomalies on power circuit breakers." IEEE Access 7 (2019): 14070-14080. Razi-Kazemi, Ali Asghar, and Kaveh Niayesh. "Condition monitoring of high voltage circuit breakers: past to future." IEEE Transactions on Power Delivery 36.2 (2020): 740-750. ### Experiments with seeded defects #### **Experimental setup:** - Live tank breaker with spring drive - Mechanical operations (no current interruption) #### Combinations of seeded defects: - Spring charge (low, normal and high) - Damper (normal and degraded) 1st Low spring charge, normal damper 2nd High spring charge, normal damper 3rd Low spring charge, degraded damper 4th Normal spring charge, degraded damper 5th Normal spring charge, normal damper ### Experiments with seeded defects #### **Monitoring sensors** - Accelerometer PCB 352A60 (installed horizontally) - Accelerometer PCB M352C18 (installed vertically) - Accelerometer PCB 353B14 (installed axially to the drive) - Microphone 378B02 ## Challenges #### No labels in substation Once fault is detected, we do not know what fault it is Supervised learning is popular in literature (laboratory) but not suitable in reality Can we identify/cluster faulty samples without labels? ## Proposed Framework #### **Condition Monitoring Data** **W** Fault Detection Convolutional autoencoders (CAE) •£ Fault Segmentation K-means clustering Fault Diagnostics Explainable Artificial Intelligence (XAI) Identify fault types (spring fault, damper fault, ...) Vibration and microphone signals, features extraction - spectrograms (4 sensors) Model learns "what is healthy" and outputs: Healthy or Faulty Segment the faults into different types, without any knowledge which cluster corresponds to which fault type 03/09/2024 ## Fault Diagnostics using XAI (Integrated Gradients) • Why is this sample classified as this label? Because of the attribution maps # Results 03/09/2024 ## Fault detection using CAE - Model learns "what is healthy" and reconstructs the signals - When faulty data is given, model failed to reconstructs the signals - Spectrogram from different sensors used as "channels" - Residuals: difference between input and reconstructed signals ## Fault segmentation using K-means clustering Samples are grouped into five different clusters • Principal component analysis (PCA), only for visualization purpose Number: clustering results Color: ground-truth (unknown in reality) : normal spring normal damper : normal spring degraded damper : high spring normal damper : low spring normal damper : low spring degraded damper ## Fault Diagnostics using XAI nS: normal spring tension nD: normal damper viscosity IS: low spring tension dD: degraded damper viscosity 13 hS: high spring tension ## Conclusions and Outlooks - Unsupervised fault detection and segmentation framework proposed and evaluated on a high-voltage circuit breaker dataset - Assist domain experts with fault diagnostics, identifying potential fault types by XAI - Future directions - Minimize number of sensor needed (Physics-informed) - Distinguishing between different severities of the same fault type - Transferability to different CBs (rating, operating mechanism...) 03/09/2024 # Questions Dr. Felipe Macedo Head of Mechanics and Reliability Engineering, Hitachi Energy felipe.macedo@hitachienergy.com #### Chi-Ching Hsu Doctoral Student, High Voltage Laboratory, ETH Zurich, hsu@eeh.ee.ethz.ch The project is financially supported by the Swiss Federal Office of Energy, Research program "energy research and cleantech" and supported with in-kind contributions and expertise by Hitachi Energy, BKW Energie AG.