

Explainable Artificial Intelligence Guided Unsupervised Fault Diagnostics for High-Voltage Circuit Breakers

Chi-Ching Hsu¹, Gaetan Frusque², Florent Forest², Felipe Macedo³,

Christian M. Franck¹, Olga Fink²

¹High Voltage Laboratory, ETH Zurich, Zurich, Switzerland

²Intelligent Maintenance and Operations Systems (IMOS), EPFL, Switzerland

³Hitachi Energy, Zurich, Switzerland

8th Intelligent Maintenance Conference September 3 – 4, 2024, Lausanne, Switzerland

Introduction

High voltage circuit breaker

Mechanical switching device capable of conducting and breaking electric current under:

- Normal electrical circuit operation
- Abnormal electrical circuit condition, such as a short circuit.

Maintenance for reliable operation

Introduction

High voltage circuit breaker maintenance

Time-based maintenance is performed in a predefined time-interval, having as risks:

- Unnecessary replacement of well-working components.
- Components might be planned to be replaced / repaired when it is too late.

Condition-based maintenance: determined based on HVCB condition assessment, having as benefits:

- Increased availability, reliability and safety.
- Reduced cost by proactive and optimized maintenance.

Introduction

Vibration monitoring

- Vibration measurements cover all physical effects that contribute to the HVCB mechanical signal.
- Installation of such monitoring system is simple and not invasive.
- Challenges for vibration data analysis:
 - Short time duration (millisecond scale)
 - Wide frequency domain
 - Nonlinearity and non-stationarity

Yang et al. (2019)

CC: Coil current

TC: Travel curve

DRM: Dynamic resistance measurement

Yang, Qiuyu, et al. "A new vibration analysis approach for detecting mechanical anomalies on power circuit breakers." IEEE Access 7 (2019): 14070-14080. Razi-Kazemi, Ali Asghar, and Kaveh Niayesh. "Condition monitoring of high voltage circuit breakers: past to future." IEEE Transactions on Power Delivery 36.2 (2020): 740-750.

Experiments with seeded defects

Experimental setup:

- Live tank breaker with spring drive
- Mechanical operations (no current interruption)

Combinations of seeded defects:

- Spring charge (low, normal and high)
- Damper (normal and degraded)

1st Low spring charge, normal damper
2nd High spring charge, normal damper
3rd Low spring charge, degraded damper
4th Normal spring charge, degraded damper
5th Normal spring charge, normal damper

Experiments with seeded defects

Monitoring sensors

- Accelerometer PCB 352A60 (installed horizontally)
- Accelerometer PCB M352C18 (installed vertically)
- Accelerometer PCB 353B14 (installed axially to the drive)
- Microphone 378B02

Challenges

No labels in substation

Once fault is detected, we do not know what fault it is

Supervised learning is popular in literature (laboratory) but not suitable in reality

Can we identify/cluster faulty samples without labels?

Proposed Framework

Condition Monitoring Data

W

Fault Detection

Convolutional autoencoders

(CAE)

•£

Fault Segmentation K-means clustering

Fault Diagnostics
Explainable Artificial
Intelligence (XAI)

Identify fault types (spring fault, damper fault, ...)

Vibration and microphone signals, features extraction - spectrograms (4 sensors)

Model learns "what is healthy" and outputs: Healthy or Faulty

Segment the faults into different types, without any knowledge which cluster corresponds to which fault type

03/09/2024

Fault Diagnostics using XAI (Integrated Gradients)

• Why is this sample classified as this label? Because of the attribution maps

Results

03/09/2024

Fault detection using CAE

- Model learns "what is healthy" and reconstructs the signals
 - When faulty data is given, model failed to reconstructs the signals
 - Spectrogram from different sensors used as "channels"
- Residuals: difference between input and reconstructed signals

Fault segmentation using K-means clustering

Samples are grouped into five different clusters

• Principal component analysis (PCA), only for visualization purpose

Number: clustering results

Color: ground-truth (unknown in reality)

: normal spring normal damper

: normal spring degraded damper

: high spring normal damper

: low spring normal damper

: low spring degraded damper

Fault Diagnostics using XAI

nS: normal spring tension

nD: normal damper viscosity

IS: low spring tension

dD: degraded damper viscosity

13

hS: high spring tension

Conclusions and Outlooks

- Unsupervised fault detection and segmentation framework proposed and evaluated on a high-voltage circuit breaker dataset
- Assist domain experts with fault diagnostics, identifying potential fault types by XAI

- Future directions
 - Minimize number of sensor needed (Physics-informed)
 - Distinguishing between different severities of the same fault type
 - Transferability to different CBs (rating, operating mechanism...)

03/09/2024

Questions

Dr. Felipe Macedo

Head of Mechanics and Reliability Engineering, Hitachi Energy

felipe.macedo@hitachienergy.com

Chi-Ching Hsu

Doctoral Student, High Voltage Laboratory, ETH Zurich,

hsu@eeh.ee.ethz.ch

The project is financially supported by the Swiss Federal Office of Energy, Research program "energy research and cleantech" and supported with in-kind contributions and expertise by Hitachi Energy, BKW Energie AG.

