

Data Analytics in Hydropower Plants

Mathias Pawlowsky

Case study format

Particular feature of the industry

Resulting challenges and Axpo's approach

Generalization and lessons learned

Goals:

- You can recognize a similarly structured problem in your industry and profit from Axpo's experiences
- You already had a similar problem and found a better solution → Let's talk

Particular features Water flows, data doesn't

Situation:

- Sensor data is stored only locally in the plant & aggregated after three months, losing resolution
- Control system is a separate network nothing in or out
- Software and hardware are easily 10 years old
- Rare protocols used (IEC 60870-5-104)

Challenge Getting data from the power plant

Technical:

How to move the data to the cloud?

Cultural:

- How to convince IT Security?
- Recognizing the value of all your data

Axpo's approach

Data architecture – from power plants to users

Axpo's approach Data architecture – from power plants to users

Axpo's approach Storing every signal

We store every signal in the highest resolution available:

- We don't know what signals we might need tomorrow
- Storing the signals just in case is not expensive:
 - Maximum is 28'000 signals per plant
 - 2 GB/month/plant
 - Assume storing last ten years 2 GB*12*10=240 GB, @ 0.1 ~ USD/GB/month → 24 USD/month/plant

Live demo use case 1 Hydro Insights

Lessons learned Cloud technology simplifies collecting data from plants

OPC DA and UA are great bridging protocols between control systems and cloud:

- Control systems typically support them
- Major cloud providers have adapters

Edge devices allow to outsource securely connecting your network and the cloud

Storing all surprising amounts of data is financially feasible

Particular features Every hydropower plant is unique

Situation:

- Each hydropower plant is designed for its specific geographical situation
- Major components are custom made

Implication for predictive maintenance:

Training data?

Mitigation strategies:

- Get more data: Domain adaptation
- Reduce data dependency: Physics-based models
- → Design know-how? → Collaboration with suppliers necessary

Challenge How to collaborate with suppliers?

Requirements:

- Keeping control over Axpo's data
- Protecting intellectual property on both sides
- User friendly interface for Axpo's maintenance and engineering teams

Challenge

Existing products don't fulfill Axpo's requirements

Disadvantages:

- Control over data?
- Vendor lock-in?
- X suppliers per plant ⇔ X user interfaces for Axpo's employees to learn

Axpo's approach Hydro Insights

Advantages:

- Grant access to data selectively
- Easy to onboard new «insight suppliers»
- One UI for Axpo's employees

Live demo use case 2 Hydro Insights

Lessons learned Collaboration with suppliers

Investment smaller than expected: Cloud2Cloud is fast to implement

Resonance is positive: Two big players exposed an API for the first time

Pricing model and validation: More complex than anticipated

#